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You could say it was Marco Polo who started it 
all when he returned from China and reported 
the distance he’d travelled east from Europe as a 
lot farther than it really was. So when the Italian 
hotshot mathematician Paolo Toscanelli used Polo’s 
data to finalize a new map of the world and then 
Columbus got hold of a copy, the distance to China 
going the other way (west, straight across an empty 
ocean) looked quick and easy. Then, oops, America!

With the discovery of a new continent, there went the  
neighborhood. The definitive map of the world at the 
time was that crafted by Aristotle, who hadn’t included 
America. What was the place doing there? And what 
about all the amazing stuff that began to pour in 
from the newfound world: new species, new minerals,  
new races, none of which were in Aristotle either. 

In 1533, Dutch mathematician Gemma Frisius 
complicated matters with his idea for fixing a loca-
tion by triangulation, thus making it easier for 
explorers to sail off into the blue; now at any point 
en route explorers could use the position of the 
last headland and the position of the next one to 
pinpoint where they were. Headland by headland, 
the more they advanced, turning the unknown into 
the known, the more unknown there was to explore. 
Discovery bred discovery, which left the other prob-
lem: What to do about their returning cargoes—
that new stuff Aristotle hadn’t mentioned—all of 
which seriously upset the comfortable medieval view 
of the world and everything in it. 

Panic set in. If Aristotle could be that wrong, 
then which way was up? As contemporary worrier 
John Donne put it: “The new philosophy (aka the 
new discoveries) calls all in doubt.” In the growing 
intellectual confusion, the search was on to generate 
data one could trust. 

So thank you, René Descartes. In 1637, his 
methodical doubt and reductionism (double-check 
everything, down to the smallest detail) took the 
risk out of risk, and the West threw itself into intel-
lectual and geographical exploration with all the 
abandon of an alcoholic in a brewery. The new 
mantra was “find useful knowledge.” Armed with 
the sword of reductionism and protected by the 

shield of method, we boldly took scientific thinking 
where no minds had gone before. The aim: to learn 
more and more about less and less. 

Faster than you could say “epistemology,” the 
knowledge disciplines proliferated, generating 
niche studies (let’s hear it for the PhD!) that in turn 
became disciplines generating their own niche stud-
ies. Silo-thinking was here to stay. And (to mix 
metaphors), inside every intellectual silo, blinkered 
specialists worked away, blissfully unaware of what 
might be going on in other silos. 

Then the fun began. As products and ideas began 
to emerge from specialist silos, they would bump 
into each other with results that were more than the 
sum of the parts. One and one began to make three. 
Maybach brought together the perfume spray with 
gasoline and invented the carburetor. Electricity and 
magnetism made possible the telegraph. The discov-
ery of the bacillus plus the invention of aniline dye 
added up to chemotherapy. As I have shown in my 
own work, innovation comes when ideas are linked 
in new ways. On the great web of knowledge, ulti-
mately everything is linked to everything else. 
Innovation is the rule, not the exception. 

As the specialists multiplied and communica-
tions technology made it easier for them to interact, 
the pace of innovation quickened, with unexpected 
results. Ripple effects could be unpredictable: The 
typewriter took women out of the kitchen into the 
office and boosted the divorce rate, refrigerators 
chilled food and punched a hole in the ozone layer, 
and X-rays bouncing off coal-crystal structures trig-
gered the genetics industry. The sciences began to 
take on double, bump-together names: neurophysi-
ology, molecular biology, astrophysics, and more. 
Gobbledygook was here to stay.

Then came the Internet, and suddenly it was 
Columbus and Frisius all over again. Today, we find 
ourselves in a vast, chaotic, interactive, constantly 
innovative, exponentially expanding world of data in 
which change is happening so fast that without  
the means to triangulate from one set of data to 
another, to see how the data relate, and what kind 
of innovation they may trigger we don’t know where 

we are, where we’re going, and, especially, what 
we’re likely to find when we get there. 

Accurate prediction is now more essential than 
ever, given above all the unimaginable potential 
social consequences of developments in different 
science and technology fields. Take, for example, 
nanotechnology: We have perhaps fifty years before 
the first nanofabricator, powered by photovoltaics, 
is able to manipulate material at the atomic level to 
create molecules and then turn those molecules into 
stuff and use that stuff to manufacture gold, food, 
bricks, water, and so on from primarily dirt, water, 
and air, making almost anything, almost free. 

The first thing the first fabricator might do is make 
a copy of itself: one for everyone on the planet in a 
matter of months. Then live wherever your fancy takes 
you, entirely self-sufficient, with the means electroni-
cally to transmit yourself across the world as a three-
dimensional hologram, a world not of 196 nations 
but of nine billion autonomous individuals with the 
freedom to do, and be, whatever they choose. 

Chaos may follow. The free provision of every  
material need and behavior unfettered by community 
constraint may call into question every social institu-
tion from government to belief systems to the cultural 
values that unite us to the entire market economy.

Since leaving the caves, we have focused our full 
attention on dealing with scarcity. The finely honed 
skills we have developed in order to handle that 
millennial problem have left us totally unprepared 
for the radical abundance that lies down the road. 

The journey from here to there is fraught with diffi-
culties and perhaps even danger. We need to be able 
to identify when required that (as they would have 
said in medieval cartography) “Here there be drag-
ons.” We need maps to guide us, to show us where not 
to go, what innovations and new ideas not to espouse, 
to reveal the unknown unknowns so as to enable us to 
predict the outcome of our choices along the way.

This extraordinary Atlas is the first step on that road.

James Burke
Science historian, author, and television producer 
London, United Kingdom

Foreword
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The Atlas of Knowledge: Anyone Can Map was written 
with the deep belief that just as “anyone can cook,” 
it is also true that “anyone can map”—or at least 
learn to do either. The Atlas series is being written 
at a time when data literacy is becoming almost as 
important as language literacy. While the first of the 
series, Atlas of Science: Visualizing What We Know, 
provided a gentle introduction to the power of maps 
for the navigation, management, and utilization of 
knowledge spaces, the Atlas of Knowledge intends to 
empower anyone to map and make sense of science 
and technology (S&T) data to improve daily  
decision making.

Part 1 argues for a systems science approach in 
the study of S&T structure and dynamics. Drawing 
on research and teaching in data mining, informa-
tion visualization, and science of science studies, it 
explains and exemplifies different levels and types of 
analysis and also reviews key facts at different levels 
of the S&T system.

Part 2 introduces a theoretical framework meant 
to guide readers through user and task analysis; data 
preparation, analysis, and visualization; visualization 
deployment; and the interpretation of S&T maps.  
It benefits from more than 10 years of tool develop-
ment and feedback from many of the more than 
150,000 tool users in academia, industry,  
and government. 

Just like the Atlas of Science, this book accompa-
nies the Places & Spaces: Mapping Science exhibit 
(http://scimaps.org). Part 3 features maps from 
the fourth to the seventh iterations, designed for 
economic decision makers, science policy makers, 
and scholars as well as librarians and library users. 
The 40 large-scale, full-page maps are meant to 
exemplify data analysis workflows and visualiza-
tion metaphors and to communicate key insights. 
The final 30 maps of this 10-year exhibit effort, 
comprising the eighth to the tenth iterations, will 
be included in the third volume of this series, the 
Atlas of Forecasts: Predicting and Broadcasting Science, 
Technology, and Innovation. 

Part 4 examines S&T trends and discusses the 
possible impact of real-time data visualizations on 
practicing and steering S&T. It concludes with 
an outlook of expected developments that focus 
strongly on democratizing knowledge and partici-
pation as well as promoting the evolution of stan-
dards—in terminology, data sets, data mining and 
visualization algorithms, workflows, and interface 
design—toward higher replicability and utility.

To ease navigation and consumption, each major 
topic is presented solely on one double-page spread. 
References to other parts of the book interlink the 
different topics and sections, resulting in a whole 
that extends beyond the sum of its parts. The deci-
sion was made to compile the extensive number of 
references in the back matter of the Atlas, including 
more than 1,500 references, 350 image credits, 30 
data credits, and 20 software credits on a page-by-
page basis.

Although textbooks such as Nathan Yau’s 
Visualize This or the IVMOOC book entitled Visual 
Insights: A Practical Guide to Making Sense of Data 
teach timely knowledge about tools and workflows, 
this Atlas series aims to present “timeless knowledge”  
that may still hold true many years from now—akin 
to Edward R. Tufte’s notion of “forever knowledge” 
that involves information design principles that are 
indifferent to culture, gender, nationality, or history.

Analysis and visualization design require the 
many varied skills involved in data management, 
data analysis, design, communication, and technol-
ogy. Depending on your background and expertise, 
different reading trajectories are proposed:
•  If you are familiar with the science of science 

studies but not as well versed in science map-
ping, begin by perusing the maps in Part 3, 
then follow up by reading the Part 2 text on 
how to design insightful visualizations.

•  If you are a visualization expert interested  
in design principles and guides, go directly  
to Part 2.

•  If you are a designer but not familiar with  
science visualizations, read Part 1 and explore 
the maps in Part 3 before consuming  
other parts.

•  If you are a programmer interested in  
building tools for avid users, start by reading 
Part 2—which explains how to systematically 
render data into insights using algorithms and 
approaches from statistics, cartography, linguis-
tics, network theory, and other areas of science. 
Then move on to Parts 1 and 4 to learn about 
current and future user needs and applications. 

•  If you wish only to see the future of S&T  
mapping, go directly to Part 4.

Additional materials can be found at http://
scimaps.org/atlas2, including high-resolution 
images that are available for closer examination; 
digital files of the more than 1,000 citations and 
source credits; access to data sets and tutorials on 
how to run specific workflows; and updates of  
essential materials in preparation for future editions. 

I feel lucky to have had the luxury of being able 
to develop this Atlas—an attempt to organize and 
make accessible to many research on the analysis 
and visualization of S&T structure and dynamics. 
It is my hope that the knowledge and techniques 
presented in these books will not only live between 
the covers, online, or in the mind of each reader, 
but also will be applied to further our understand-
ing and to improve both our personal and collective 
decision making.

Katy Börner
Cyberinfrastructure for Network Science Center
School of Informatics and Computing
Indiana University

August 11, 2014
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It may seem unwise to devote a major part of  
one’s research time to writing a series of books 
for readers who are unlikely to write papers or 
otherwise cite these books in academic circles. 
And yet it seems quite on target to enable those 
who finance science via tax dollars to benefit 
from the research results—forfeiting the maxi-
mization of citation counts via the production 
of research papers. Many others have taken this 
route, including the following luminaries who 
have inspired my own journey: Jacques-Yves 
Cousteau, the French explorer and researcher of 
the sea; David Attenborough, especially with his 
Life on Earth and Living Planet series; Paul Otlet, 
with his Universal Atlas or Encyclopedia Universalis 
Mundaneum; Stuart Brand, author of The Whole 
World Catalog; Richard Dawkins, famed for his 
“Growing Up in the Universe” lectures; Al Gore 
for his environmental efforts, as featured in the 
An Inconvenient Truth documentary; and Hans 
Rosling, whose Gapminder effort gave rise to  
the motto, “Let my dataset change your mindset.”  

It is my hope that this Atlas series joins in giving 
both inspiration and encouragement to future 
science communicators.

I am deeply grateful to all those who helped to 
make possible this Atlas and the exhibit maps  
it features. 

Part 2, Envisioning Science and Technology, 
benefited deeply from my teaching of relevant 
courses at Indiana University over the last 14 years, 
including teaching the Information Visualization 
MOOC (IVMOOC) to students from more than 
100 countries in the spring of 2013. 

The Places & Spaces: Mapping Science exhibit 
would not have been possible without the exper-
tise and professional excellence of the more than 
236 mapmakers and the 43 exhibit ambassadors 
around the globe. Exhibit advisers for the maps 
featured in this book include: Deborah MacPherson 
(Accuracy&Aesthetics), Kevin W. Boyack (SciTech 
Strategies, Inc.), Sara Irina Fabrikant (Geography 
Department, University of Zürich, Switzerland), 
Peter A. Hook (Law Librarian, Indiana University), 

André Skupin (Geography, San Diego State 
University), Bonnie DeVarco (BorderLink), and 
Dawn Wright (Geography and Oceanography, 
Oregon State University). External experts that 
reviewed iterations 4 through 7 included: John R. 
Hébert (Chief of the Geography and Map Division, 
Library of Congress), Thomas B. Hickey (OCLC), 
Michael Kurtz (Harvard-Smithsonian Center 
for Astrophysics), Denise A. Bedford (World 
Bank), William Ying (CIO ArtSTOR), Michael 
Krot (JSTOR), Carl Lagoze (Cornell University), 
Richard Furuta (Texas A&M University), Vincent 
Larivière (Université du Québec à Montréal, 
Canada), Adam Bly (CEO of SEED), Alex Wright 
(author of Glut: Mastering Information Through The 
Ages), and Mills Davis (Project10x.com). 

Focused brainstorming workshops, organized  
with colleagues between 2008 and 2014, contrib-
uted greatly to the discussion of research and 
development work that is contained in these pages.  
A total of 25 such workshops were held on a range  
of topics, including “How to Measure, Map, and 

March 4-5, 2010: NSF/JSMF Workshop on Mapping of Science and Semantic 
Web, Indiana University, Bloomington, Indiana

October 1-2, 2009: NSF/JSMF Workshop on How to Measure, Map, and 
Dramatize Science, New York Hall of Science, NY

October 9-10, 2010: Modeling Knowledge Dynamics, The Virtual Knowledge 
Studio, Amsterdam, The Netherlands
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Dramatize Science,” “Mapping the History and 
Philosophy of Science,” “Modeling Knowledge 
Dynamics,” “Artists Envision Science & 
Technology,” and “Plug-and-Play Macroscopes” 
(see group photos).

A substantial part of the source review and  
initial writing was completed while I was a visiting  
professor at the Royal Netherlands Academy of 
Arts and Sciences (KNAW) in the spring of 2012. 
I would like to thank Paul Wouters of CWTS and 
Andrea Scharnhorst and Peter Doorn of DANS for 
their support.
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Science Foundation under Grants No. 
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and CBET-0831636; the National Institutes 
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Thomson Reuters; Elsevier; the Cyberinfrastructure 
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ate the science maps is from the Web of Science 
by Thomson Reuters and Scopus by Elsevier. Any 
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author(s) and do not necessarily reflect the views of 
the National Science Foundation.
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We thrive in information-thick worlds because of our marvelous and everyday capacity to select, 
edit, single out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize, 
condense, reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look into, idealize, 
isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, 
lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize, itemize, 
review, dip into, flip through, browse, glance into, leaf through, skim, refine, enumerate, glean, 
synopsize, winnow the wheat from the chaff and separate the sheep from the goats.
Edward R. Tufte

Part 2: Envisioning Science 
and Technology



Foundations
The structure and content of this part was inspired 
by scholarly works written over the last 250 years. 
Among them are William Playfair’s The Commercial 
and Political Atlas; Jacques Bertin’s Semiology of 
Graphics; John Tukey’s practical epistemology; 
William Cleveland’s combination of statistical and 
experimental evidence; Howard Wainer’s work on 
history, statistics, and graphics; Edward Tufte’s many 
examples of good design in Beautiful Evidence; Leland 
Wilkinson’s codification of the structure of graphics 
in The Grammar of Graphics; and additional works from 
psychology, cartography, statistics, and other sciences 
that use data analysis and visualization, graphic 
design, and illustration to support decision making. 

The process of creating insightful visualizations 
calls for the synergism of several disciplines: technol-
ogy, to ensure that certain analyses can be run and 
designs produced; science, to provide correct and 
rigorous results; and art and design, to deliver aesthet-
ically pleasing results that will attract and retain the 
attention of viewers so they may engage and gain 
valuable insights from those visualizations.

Setting Up Successful Projects
The design of insightful visualizations requires access 
to three essential ingredients: expertise, data, and 
resources. Expertise is traditionally provided by 
domain experts or clients that have specific insight 
needs (see page 40, User Needs Acquisition), are 
available to help with identifying and gaining 
access to relevant data sources (see page 42, Data 
Acquisition), and can interpret and evaluate results 
(see page 72, Validation and Interpretation). High 
quality and coverage of data is important. If faulty 
or incomplete data are used, visualizations, in turn, 

will also be faulty or incomplete. The problem  
of “garbage in, garbage out” could potentially  
escalate, as professionally rendered visualizations of 
incomplete or false data can easily lead to inappropri-
ate decisions or the transmission of unverified infor-
mation. Finally, resources include time and monetary 
investment or access to tools when performing the 
planned work. If any of these ingredients is not avail-
able, the visualization project is likely to fail. 

Embracing the Power
Visualizations give form to either visible or invisible 
entities, making them tangible, understandable,  
and actionable. By thoughtfully representing high-
quality, comprehensive data in an easy-to-read 
format, insightful renderings can change our view 
of the world. An example is Charles Darwin’s 1837 
Tree of Life drawing (see opposite page, top-left), 
which shows how species are purportedly related 
through evolutionary history and thereby reveals 
what may be life’s common ancestry.

Visualizations have been instrumental in saving 
people’s lives. One case in point is John Snow’s Cholera 
Map of 1854 (see opposite page, lower-left), regarded 
as a key factor in the founding of the science of epide-
miology. In the map, bars represent deaths caused by 
the 1854 London cholera epidemic. By showing them 
clustered around the water pump on Broad Street, the 
map enabled the recognition of cholera as a water-
borne disease. Subsequent removal of the pump’s 
handle led to the decreased incidence of cholera. 

Another example is the “coxcomb” or polar-area 
diagram, first developed by Florence Nightingale. 
Her 1858 graphic on the Causes of Mortality in 
the British Military during the Crimean War (see 
opposite page, top-right) was critical in document-
ing that most soldiers had died of preventable or 

mitigable infectious diseases (blue) rather than of 
wounds sustained in battle (red) or other causes 
(black). The diagram presented vital statistical data 
in a way that persuaded Queen Victoria and others 
of the need to improve sanitary conditions in mili-
tary hospitals, which substantially helped reduce 
death rates, profoundly influencing the subsequent 
course of the British military medical system.

David McCandless’s The Antibiotic Abacus: Adding 
up Drug Resistance (opposite page, lower-right) uses 
data from the Centers for Disease Control and 
Prevention and the World Health Organization to 
communicate the increasing resistance of bacteria to 
antibiotics. Bacteria names are listed vertically on the 
left. Antibiotics and antibiotic families are plotted 
horizontally by date of introduction. Circles indicate  
the resistance of bacteria to different antibiotics 
(pink) and antibiotic families (purple): the larger the 
circle size, the higher the resistance. Note that many 
bacteria are “superbugs” that are resistant to multiple 
antibiotics. No major new antibiotics have been 
developed for the last 20 years—indicating a poten-
tially fatal drug-development gap.

Visualizations have the power to help translate  
and cross-fertilize vital concepts across disci-
plinary boundaries—as did the discovery of the 
DNA structure by James D. Watson and Francis 
H.C. Crick in 1953 (see Atlas of Science, page 121). 
Visualizations may also serve to inspire and support 
future discoveries (see The Visual Elements Periodic 
Table in Atlas of Science, page 115). 

Other visualizations raise our awareness of both 
human unity and fragility, such as the Earthrise 
picture, taken by astronaut William Anders during 
the Apollo 8 mission in 1968.

In general, most people have a deep respect for 
facts and arguments expressed as numbers or visu-
alizations. However, they often don’t understand 
just how many different decisions need to be made 
in order to render data into insights. Information 
visualization designers play a key role in making 
that process more transparent. In addition to 
revealing data, analysis, and visualization details, 
they must provide pointers to supplemental infor-
mation, as such details are vital for the proper  
interpretation of visualization results.

Doing It Yourself
Just as anybody can learn to cook, anybody can learn 
to analyze and visualize data. In a data-driven world, 
this is not only possible but also necessary for high 
productivity and intelligent decision making. This 
Atlas aims to teach general approaches and techniques 
that are independent of specific implementations and 
tools. Specifically, the subsequent double-page spread 
introduces a general workflow and a visualization 

framework that aim to guide the design of effective 
visualizations. As a new view of data will often also 
expose new data issues or inspire new questions, being 
able to rapidly generate and interpret results is an 
extremely powerful skill. As many data sets cannot  
be shared freely and the expertise of practitioners is 
invaluable for data selection and interpretation, it is 
desirable that as many individuals as possible acquire 
basic data visualization literacy. Those who master the 
basics can begin to find data visualization both fun 
and empowering while quickly advancing their skills.

Terminology
The following pages draw from many different areas 
of science, each with its own specific history, culture, 
and language. An algorithm cited in this section 
may have been originally developed in mathematics, 
physics, or biology; or a chart that appears here may 
be one used by engineers, economists, and statisti-
cians alike, though each group will call it by a differ-
ent name. This Atlas aims to introduce and exem-
plify an internally consistent approach and language 
for the design of insightful visualizations, which 
builds on and uses terminology from existing lines of 
research. Selecting key concepts and the best names 
for them posed a key challenge in the writing of this 
book. The ultimate choices were guided by the need 
for consistency within and universality across differ-
ent conceptualizations and terminologies. References 
to original works as well as alternative names are 
given whenever new concepts and terminology are 
introduced (see page 178, References & Credits).

Disclaimer
Part 2 reviews general “timeless” approaches and 
design principles. For “timely” step-by-step tutorials 
and practical design tips or reviews of specific tools, 
please see Katy Börner and David E. Polley’s Visual 
Insights, Nathan Yau’s Visualize This, Derek Hansen 
et al.’s Analyzing Social Media Networks with NodeXL, 
or Felice Frankel’s Visual Strategies. 

Visualizations are used to illustrate key concepts. 
See also Part 3 (page 75) for detailed explanations 
of 40 large-scale maps; books by Edward R. Tufte 
for expert descriptions of hand-drawn visualiza-
tions; and recent books by David McCandless, 
Manuel Lima, and Sandra Rendgen for a rich 
assortment of highly innovative and colorful charts, 
graphs, and infographics. 

The Atlas of Knowledge focuses on the design 
and use of computer-generated (rather than hand-
drawn) visualizations, which have the potential to 
empower anyone to make sense of big data. Toward 
that end, simple yet effective and validated visu-
alizations are favored over complex visualizations 
designed primarily for experts. 

Foundations and Aspirations  
Part 2 of this book introduces general data analysis and visualization techniques 
commonly used to study science and technology (S&T). Data analysis is an  
iterative process that cleans, filters, interlinks, mines, and augments data. Data 
visualization corresponds to an optimization of many different design decisions 
that relate not only to the layout and visual encoding of data but also to the  
interactivity and deployment of visualization. In this spread, foundations and 
aspirations for this Atlas are discussed, and the importance of empowering anyone 
to read and make visualizations is explained.

Maps, like speeches and paintings, are authored collections of information and also are 
subject to distortions arising from ignorance, greed, ideological blindness, or malice.
Mark Monmonier
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Causes of Mortality in the British Military  
during the Crimean War

The Antibiotic Abacus: Adding Up Drug ResistanceSpot Map of the Golden Square Cholera Outbreak

Tree of Life
In this first sketch of an evolutionary tree (or 
branching diagram), Charles Darwin shows the 
tree’s main trunk, labeled 1, as it divides and ends 
in leaf nodes, indicated by cross strokes. Major 
branches, labeled A through D, indicate living  
species. Twigs terminating abruptly and emerging 
at lower points along branches represent  
extinct species.
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Visualization Taxonomies  
and Frameworks
Many visualization taxonomies and frameworks 
have been proposed (for key works, see page 178, 
References & Credits). Ed Chi’s information visu-
alization data-state reference model is exemplarily  
shown below. It identifies three transformations that 
convert the raw data values into a visualization  
view: The Data Transformation reads the raw data 
values and generates an analytical abstraction of 
the data, also called metadata. The Visualization 
Transformation takes that analytical data abstraction 
and reduces it to a visualization abstraction that can 
be visualized. The Visual Mapping Transformation 
reads that visualization abstraction and generates a 
static or interactive graphical view of the data.

Although Chi’s model looks rather linear the 
overall process is typically very iterative and circular.  
Ideally, users are able to flexibly select the data that 
is used, the analytical abstraction that is run, and 
the visual mappings that are applied. 

This Atlas series promotes (1) a needs-driven, 
highly iterative workflow design that combines 
sequential data analysis and parallel visualization 
design optimization; (2) argues for a clear separa-
tion of reference systems (also called base maps) and 
data overlays to ease the interpretation and genera-
tion of visualizations; and (3) introduces a visualiza-
tion framework that distinguishes different types of 
insight needs (page 26), data scales (page 28), visu-
alizations (page 30), graphic symbols (page 32), and 
graphic variables (page 34) in support of effective 
visualization design and transfer of visualization 
solutions across disciplinary boundaries. All three 
elements are discussed below.

Workflow Design
The Atlas of Science (page 51) discussed data acqui-
sition, preprocessing, analysis, modeling, and 
visualization layout as the basic building blocks in 
data analysis workflows. The figure on the right 
shows the key elements and processes involved in 
the design of workflows. Starting with stakehold-
ers in the top-left corner of the figure, workflow 
design involves four major tasks: Acquire, Analyze 
& Visualize, Deploy, and Interpret. Acquire com-
prises user needs analysis as well as data acquisition 
and preparation. Analyze & Visualize reads data 
and applies computational algorithms to convert 
data into visual insights. Deploy refers to the selec-

tion of output devices (e.g., paper printouts, online 
interactive interfaces) and the design of interactive 
user interfaces that might be interactive or feature 
combinations of multiple data views. The inter-
pretation and validation of visualizations tend to 
inspire new hypotheses, insight needs, and future 
studies making the workflow design process highly 
iterative. The four tasks are used to organize  
Part 2—see section titles and page numbers given 
next to each task—effectively serving as a visual 
index to specific content. Subsequently, the impor-
tance of a detailed user and task analysis, access 
to high quality data, the sequential versus parallel 
nature of data acquisition, analysis, and visualiza-
tion, and expert validation are discussed. 

Users Are Central
Detailed knowledge of user needs, expertise, and 
work environment is key for the design of success-
ful visualizations. It is important to understand the 
type and level of analysis that users need (see page 
4, Systems Science Approach); the insight needs 
they have (e.g., search versus comparison); the  
hardware-software combinations they use, as that 
affects deployment; and the level of data visualiza-
tion literacy they currently have (e.g., what visual-
ization types they can read and create). Involving 
users in data compilation, analysis, and visualiza-
tion is the only way to ensure accuracy and relevance 
of results (see page 40, User Needs Acquisition).

Data Quality and Coverage
Data quality and coverage affect the type and level 
of analysis that can be performed. Answering 
“when” questions requires that data records have 
time stamps. Individual and global studies require 
data at the individual and global levels, respectively. 

Comparison tasks can only be supported if equiva-
lent data on the entities to be compared is available. 
Data variables may be qualitative or quantitative 
(see page 28, Data Scale Types), influencing which 
visual encodings can be used (see pages 30–39). 
Data size will affect download speed and the  
display space that is required (see pages 66–71  
on deployment).

Sequential Data Acquisition  
and Analysis
The acquisition, cleaning, and analysis of data are 
commonly done using a sequence of steps that build 
on each other. For example, a data preprocessing 
step might delete existing data variables (e.g., by 
eliminating duplicates), merge them (e.g., by link-
ing publication and funding data based on unique 
scholar names), or split them (e.g., by distinguishing 
male from female authors). Alternatively, a process-
ing step can add new data variables (such as latitude 
and longitude information for postal addresses)  
or introduce linkages between data records (e.g., 
coauthor information on publication records can 
be used to extract coauthor networks). That is, the 
result of each processing step is a data set that may 
have different numbers and types of records and 
data variables. Similarly, different types of analysis 
might be applied to extract existing or calculate new 
data variables. For instance, publication year and 
title information might be used to identify topic 
trends and coauthor networks might be analyzed to 
identify backbones or clusters. Sequential applica-
tion of different analyses ensures that all computed 
values are ready for use when generating the visu-
alization—there is no need to combine the results 
from different parallel analyses.

Needs-Driven  
Workflow Design  
This double-page spread discusses the iterative design of data analysis and visual-
ization workflows. The proposed workflow underscores the importance of having a 
deep understanding of user needs, expertise, and work environment. It groups and 
labels key processes in the data analysis and visualization workflow; emphasizes the 
sequential process of data reading and analysis as well as the parallel optimization of 
different visualization layers and deployment options; and stresses the importance of 
expert interpretation and validation. In addition, this spread introduces a theoretically 
grounded yet practically useful visualization framework that supports the design of 
effective visualizations. 

Tell me, I forget. Show me, I remember. Involve me, I understand.
Benjamin Franklin 

M
ot

iv
at

io
n

D
ep

lo
y

In
te

rp
re

t 
An

al
yz

e 
& 

Vi
su

al
ize

Ac
qu

ire
Fr

am
ew

or
k

24      Part 2: Envisioning Science and Technology



Parallel Visualization Optimization
The Atlas of Science (page 51) introduced nine visu-
alization layers, all of which can be grouped into 
visualization and deployment. Basically, visualiza-
tion design comprises the selection of a base map 
reference system and the design of data overlays (see 
subsequent section). Deployment requires selecting  
an output medium and designing appropriate visual 
combinations and interactivity. Each of these  
subtasks or selections impacts all others. For exam-
ple, selecting a small handheld device as preferred 
output medium considerably restricts the detail of 
the reference system (e.g., when using a world map, 
only general country outlines and few labels can be 
shown) and the number of data records that can be 
visualized; it also increases the need for effective 
interactivity design. 

Expert Validation 
It is absolutely mandatory to involve key stakehold-
ers not only during user and task analysis, data 
acquisition, analysis, visualization, and deployment 
but also during the interpretation and validation  
of results. As data complexity and size increase  
and problems become more interdisciplinary in 
nature it might be necessary to involve experts with 
different knowledge and expertise. Different valida-
tion criteria and validation methods exist and can 
be applied to ensure visualizations are correct,  
readable, and actionable (see page 72, Validation  
and Interpretation).

Reference System versus  
Data Overlay
The Atlas series argues for a clear separation of 
reference systems (also called base maps) and data 
overlays. This separation makes it possible to cleanly 
separate reference systems (such as a Cartesian 
coordinate system, geospatial map, or anchoring 
background image of a brain) that are used in dif-
ferent scientific disciplines; it helps understand dif-

ferences in how data is projected onto the different 
reference systems; and teach commonalities and dif-
ferences in the design of data overlays for different 
visualization types. 

In this Atlas series, a reference system defines 
the space onto which all data is projected. In 
order for users to read a visualization properly, 
the reference system must be well-defined and 
easy to understand. Data overlays are defined 
as a mapping of data record variables to proper 
graphic symbol types (e.g., circles or squares; see 
page 32) and graphic variable types (e.g., position, 
color or shape; see page 34). To give an example, 
a set of five maps is shown on the left. The U.S. 
Map of Contiguous States on the top is the refer-
ence system, or the base map. Below it, four data 
overlays are given. The Disjoint Cartogram Map 
plots data onto the size of each state by rescaling 
each state around its centroid, which preserves 
local shape but not topography. The Continuous 
Cartogram Map and the Choropleth Map both 
display 2012 U.S. presidential election results. 
States in red represent a majority vote for the 
Republican candidate, Mitt Romney; those in  
blue reflect a majority vote for the Democratic 
candidate, Barack Obama. The continuous carto-
gram sizes states according to their population 
size: the red areas are considerably reduced while 
blue areas are expanded providing a different 
view of the election results. The last map, entitled 
Proportional Symbol Map with Line Overlays shows 
a combination of data overlays: major U.S. airports 
are denoted by circles, which are size-coded  
by traffic data; atop are flights out of Chicago 
O’Hare International Airport, each represented 
by a line. 

Reference system and data overlay together 
determine the resulting visualization type. For 
example, data variables (e.g., population counts, 
election results, or flight connections between 
geolocations) might be visualized by (1) distorting 
the size and/or shape of the base map, to produce 

what is called a cartogram; (2) visually encoding 
base map areas (e.g., color-coding them) in what 
is called a choropleth map; (3) modifying the Z 
dimension in a stepped relief map (see page 53,  
In the Shadow of Foreclosures); (4) visually encoding 
nodes in a proportional symbol map; or (5) visually 
encoding links in a linkage map.   

Visualization Framework
The problem-solving space that needs to be  
traversed to arrive at a successful visualization  
solution is high-dimensional and inherently  
complex. Many different proposals exist on  
how to structure this space to make it easier to 
navigate and manage. The visualization framework 
proposed in this Atlas draws on work developed  
in different disciplines of science. Specifically,  
it distinguishes insight need types (page 26):  
sorting, trends, geospatial locations, relationships, 
etc.; data scale types (page 28): nominal, ordinal, 
interval, and ratio data; types of analysis (page 
4, Systems Science Approach): temporal (when), 
geospatial (where), topical (what), and trees and 
networks (with whom); levels of analysis (page 
4, Systems Science Approach): micro, meso, and 
macro; visualization types (page 30): table, chart, 
graph, map, and network layout; graphic symbol  
types (page 32): geometric symbols, linguistic 
symbols, and pictorial symbols; graphic variable 
types (page 34): position, form, color, texture,  
etc.; and, last but not least, interaction types  
(page 26): zoom, search, filter, etc., see below  
listing of all types discussed in Part 2. The frame-
work creates a “periodic table” of reference systems  
and data overlays, which can help to identify 
promising visualization combinations. It is then 
applied to discuss data acquisition (pages 40–43); 
analysis and visualization of different types of  
data using approaches ranging from statistics 
to network science (pages 44–65); deployment 
(pages 66–71); and interpretation and validation 
(pages 72–73). 

U.S. Map of Contiguous States

Disjoint Cartogram Map

Continuous Cartogram Map

Choropleth Map

Proportional Symbol Map with Line Overlays

Visualization Framework
Insight Need Types
page 26

Data Scale Types
page 28

Visualization Types
page 30

Graphic Symbol Types
page 32

Graphic Variable Types
page 34

Interaction Types
page 26

•  categorize/cluster
•  order/rank/sort
•  distributions  
   (also outliers, gaps)
•  comparisons
•  trends  
   (process and time)
•  geospatial
•  compositions  
   (also of text)
•  correlations/relationships

•  nominal
•  ordinal
•  interval
•  ratio

•  table
•  chart
•  graph
•  map
•  network layout

•  geometric symbols
        point
        line
        area
        surface
        volume
•  linguistic symbols 
        text
        numerals
        punctuation marks
•  pictorial symbols 
        images
        icons
        statistical glyphs

•  spatial
        position
•  retinal
        form
        color
        optics
        motion

•  overview
•  zoom
•  search and locate
•  filter
•  details-on-demand
•  history
•  extract
•  link and brush
•  projection
•  distortion
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Framework 
This section defines a set of basic task types and  
a set of interactivity types. The former help guide 
the selection of visualization types (page 30), 
graphic symbol types (page 32), and graphic  
variable types (page 34). The latter guide interaction 
(page 68) and human–computer interface design 
(page 70).

For both types, i.e., basic task types (see table 
below) and interactivity types (see table in top-
right), key approaches are discussed and a unified 
naming schema is proposed. Note that alignment in 
approaches is extremely difficult to attain and most 
likely imperfect, as most authors and tool develop-
ers do not provide a definition of the terms they use. 

Plus, the approaches were developed for very differ-
ent purposes—from organizing materials in a book 
to helping users select appropriate visualizations.

Basic Task Types 
A table of basic task types, identified by differ-
ent scholars and tool developers, is shown below. 
Columns are sorted by time, left to right.

Jacques Bertin aims to identify tasks that can  
be mapped to graphic variable types, which he 
calls visual variable types (see page 34). Bertin 
identifies selection (whereby marks are perceived 
as different, forming families), order (whereby 
marks are perceived as ordered), association (or 
similarity, whereby marks are perceived as simi-
lar), and quantity (whereby marks are perceived as 

proportional to each other). While the first three 
task types are used to encode qualitative data, 
the last is relevant for quantitative data. Stephen 
Wehrend and Clayton Lewis distinguish ten 
general retrieval tasks, such as locate (search for 
a known object), identify (object is not necessar-
ily known), distinguish, categorize, cluster, see 
distribution, rank, compare (within entities and 
between relations), associate, and correlate. Six  
of these ten tasks are relevant for data analysis and 
visualization and are given in the table. Stephen 
Few’s Graph Selection Matrix was designed to 
help identify what graph type (point, line, bar, 
or box plot) is best for what task. It distinguishes 
different featured relationships, such as ranking, 
distribution, nominal comparison and devia-
tion, time series, geospatial, part-to-whole, and 
correlation. Nathan Yau distinguishes five visu-
alization types: patterns over time, proportions, 
relationships, differences, and spatial relations. 
Sandra Rendgen and Julius Wiedemann organize 
more than 400 visual graphics by location, time, 
category, and hierarchy. Felice Frankel distin-
guishes three major purposes of a visual graphic—
form and structure, process and time, compare 
and contrast—and uses them to teach important 
visual design strategies. Diverse tools and online 
services exist that aim to empower users to gener-
ate different types of visualizations: IBM’s Many 
Eyes site supports visualizations that reveal rela-
tionships among data points, compare data values, 
track rises and falls over time, see parts of a whole, 
analyze text, and generate maps. Chart Chooser 
helps users select the right graph by grouping the 
visuals via comparison, distribution, composition, 
trend, relationship, and table. The last column of 
the table shows the set of types that are used in 
this Atlas (see descriptions and examples on  
opposite page).

Interaction Types 
Other scholars have identified interactivity types 
(see top-right table). For interactive data explora-
tion, Ben Shneiderman cites overview (seeing the 
entire collection), zoom (zooming in on items of 
interest), filter (selecting interesting items), details-
on-demand (selecting one or a group of items and  
getting details when needed), relate (viewing  
relationships among items; see basic task types in 
lower-left table), history (keeping a log of actions to 
support undo, replay, and progressive refinement), 
and extract (access subcollections and query param-
eters). Daniel Keim distinguishes major interaction 
techniques such as zoom, filter, and link and brush. 
The latter technique interlinks multiple visualiza-
tions of the same data—users can select data records 

via brushing in one view to highlight these records 
in all other views. Keim also lists projection and 
distortion techniques (e.g., hyperbolic and spheri-
cal spaces) as a means to provide focus and context. 
For additional reference, please see the discussion in 
Interaction (page 68).

Naming Conventions
In this and all subsequent spreads, the following 
terminology will be used. Physical or virtual items 
will be called objects. Objects can be represented 
by a data record (also called a data point). A data 
record is an N-tuple (or vector) of data variables. 
Data variables (also called data properties, feature 
attributes, or parameters) may be qualitative or 
quantitative. The value of data variables may change 
over time. A data set (also called a data series) com-
prises one or more data records.

The example below shows the records of two 
scholars, each represented by a 6-tuple. Three data 
variables are qualitative (ID, Name, Country); all 
others are quantitative. The Age value will increase 
by one each year. 

ID Name Age Country #Papers #Citations
1 J. Smith 53 U.S. 101 367

2 J. Chen 45 China 59 150

In order to represent relationships between 
objects (e.g., scholars), a so-called linkage table can 
be used. Each link is represented by an M-tuple  
of data variables. The first two columns commonly 
represent the IDs of the objects that are linked. 
Other columns may represent additional attribute 
values. The table below exemplarily represents the 
coauthor links between the two scholars above, 
with Weight indicating the number of papers they 
authored together and Begin and End denoting  
the first and last years when a given joint paper  
was published.

ID1 ID2 Type Weight Begin End
1 2 Coauthor 3 1999 2005

Insight Need Types  
Visualizations commonly support either communication or exploration.  
While the former visualizations are mostly polished and static, the latter are less 
polished yet interactive. Jacques Bertin argues that a graphic representation might 
fulfill three functions: recording of information, communicating information, 
and processing information. Robert L. Harris distinguishes graphs for analyzing 
and planning; monitoring and controlling; and communicating, informing, and 
instructing. This spread reviews basic task and interactivity types and proposes a 
unifying naming scheme with descriptions and examples.

For a person to become deeply involved in any activity it is essential that he knows 
precisely what tasks he must accomplish, moment by moment. 
Mihaly Csikszentmihalyi

Basic Task Types

Bertin, 1967 Wehrend 
& Lewis, 
1996

Few, 2004 Yau, 2011 Rendgen & 
Wiedemann, 
2012

Frankel, 
2012

Tool: Many 
Eyes

Tool: Chart 
Chooser

Börner, 
2014

selection  categorize category categorize/
cluster

order rank ranking table order/rank/
sort 

distribution distribution distribution distributions 
(also outliers, 
gaps)

compare nominal 
comparison 
& deviation

differences compare 
and 
contrast

compare  
data values

comparison comparisons

time series patterns 
over time

time process 
and time

track rises  
and falls  
over time

trend trends 
(process and 
time)

geospatial spatial 
relations

location generate 
maps

geospatial

quantity part-to-
whole

proportions form and 
structure

see parts 
of whole, 
analyze text

composition compositions 
(also of text)

association correlate correlation relationships hierarchy relations 
between  
data points

relationship correlations/  
relationships 
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Interactivity Types

Shneiderman, 1996 Keim, 2001 Börner, 2014
overview overview

zoom zoom zoom

search and locate

filter filter filter

details-on-demand details-on-demand

history history

extract extract

link and brush link and brush

projection projection

distortion distortion
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Categorizing and Clustering
Categorization is the assignment of data records 
to a category (also called cluster, class, or group) of 
similar data records. Categories might be manually 
defined or computed using clustering techniques. 

Clustering is the task of assigning a set of data 
records to groups (also called classes or categories) 
so that objects in the same cluster are more similar  
to each other than to those in other clusters. 
Cluster-defining properties may exist in the  
original raw data (e.g., publication year) or can  
be computed (e.g., the similarity of papers based 
on similar word usage. The result of clustering may 
be a hierarchy (below) or partition with disjoint or 
overlapping clusters. 

In addition, users may be able to manually explore 
clusters (see page 68, Interaction) and group data 
records. Clustering is frequently applied to make data 
patterns easier to see and to reduce visual complexity.  
For further reference, see Clustering (pages 52  
and 60).

Trends
A pattern of gradual change in the average or gen-
eral tendency of data variables in a series of data 
records is called a trend. Trends can vary in length 
(from short-term, to intermediate, to long-term) 
and strength (in terms of the amount of change 
and the number of data variables and data records 
involved); see examples in Temporal Studies—
“When” (page 48). Trends are commonly repre-
sented using a graph or map. 

The comparison below of how people spent their 
weekend time in 2010 versus in 2005 shows a 
significant decreasing trend for spending time overall 
With Family and Friends and a milder increasing 
trend for specific activities such as Eating Out. 

Ordering, Ranking,  
and Sorting
Ordering (also called sorting) refers to the arrange-
ment of objects in relation to one another according 
to a particular sequence, pattern, or method. The 
position in a sorted arrangement of objects is called 
a ranking. 

Shown below-left is an alphabetically sorted list 
of subsection titles, with the title in the fifth rank 
highlighted. Given on the right is a numerically 
sorted list of numbers. Items may also be sorted by 
size, speed, or other data properties.

Geospatial Location
Geospatial location refers to a particular place or 
position. Two geometric objects can have diverse 
spatial relationships, defined by such “predicate” 
terms as equal, disjoint, intersects, touch, overlap, 
cross, within, or contain. A map is commonly used 
to show the locations, forms, sizes, and spatial rela-
tionships of objects; see description in Geospatial 
Studies—“Where” (page 52). 

Shown here is a map of the world with a propor-
tional symbol overlay that reveals the origin and 
number of students who registered for the spring 
2014 Information Visualization MOOC course 
at Indiana University by the end of May 2014. 
Although 1,368 of the more than 3,600 students 
were based in the United States, students came 
from more than 200 countries.

Distribution (also Outliers  
and Gaps)
Distributions capture how objects are dispersed in 
space. A statistical distribution is an arrangement of 
the values of a variable that shows their observed or 
theoretical frequency of occurrence. It supports the 
detection of outliers and gaps that are important for 
understanding data quality (uncertainty and miss-
ing or erroneous data) and data coverage (pedigree 
and scale). 

The example below shows the distribution of 
Scores for an imaginary exam. Each represents 
the score of one student, with most students achiev-
ing a score of 4 to 6. Five students scored higher, at 
7 or 8. The single student who scored 1 is consid-
ered an Outlier; a Gap is shown between that 
student and the others. For further reference, see 
Statistical Studies (page 44).

Composition (of Objects  
and of Text)
Composition refers to the way distinct parts or 
objects are arranged to form a whole. Part-to-whole 
relationships are important, as is the individual 
form and structure of the parts and the whole. 
Composition also refers to the process of putting 
words and sentences together to create text; see 
Topical Studies—“What” (page 56). 

The two visualizations below show the number 
of directories and subdirectories in a file hierarchy  
as a tree view (left) and a force-directed layout 
(right); see Network Studies—“With Whom” 
(page 60). 

Comparison
A comparison refers to the process of examining 
two or more objects to establish similarities and dis-
similarities. Single data values, objects with many 
data values, object groups, or object interlinkages 
can be compared. Visual comparisons become easier 
if visualizations are shown side by side. 

An example is the population pyramid below, 
which shows the number of male (left) and female 
(right) citizens per age group. Numbers decrease as 
age increases, with women shown to live slightly 
longer than men.

Correlations and Relationships
Correlations express the relationship between two 
or more objects or attribute values. Relationships 
can have different cardinality: One-to-one relation-
ships (e.g., position rank vs. income) are commonly 
represented by scatter plots and other graphs (see 
page 44 and 47, Correlations). One-to-many or 
many-to-many relationships are typically commu-
nicated using network visualization types; see page 
60. Networks might have one or more node types 
and one or more link types. Links might be undi-
rected or directed, unweighted or weighted.

The network below shows 16 nodes representing 
Italian families, size coded by wealth, and inter-
linked by marriage (dotted) and business (dashed) 
relationships, or both (solid). See page 62, Radial 
Tree for an alternative layout and a discussion of 
this network.

Descriptions and Examples

Subsection Titles
Categorizing and Clustering

Comparison

Composition (of Objects and of Text)

Correlations and Relationships

Distribution (also Outliers and Gaps)

Geospatial Location

Ordering, Ranking, and Sorting

Trends

Numbers
3

5

19

220

23

29

101

1,000
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Framework
Many different definitions exist for data scale types. 
Key works are shown in the table below. In his 1946 
paper “On the Theory of Scales of Measurement,” 
Stanley S. Stevens distinguished nominal, ordinal, 
interval, and ratio data based on the type of logical 
mathematical operations that are permissible (see 
section Mathematical Operations and table top-
right). That is, the type of scale used depends on  
the mathematical transformations that can be  
performed on the data. 

In 1967, Jacques Bertin argued for three  
data scale types: qualitative, ordered, and quan-
titative—which roughly corresponds to nominal, 
ordinal, and quantitative (also called numerical).  
His terminology was adopted by geographer Alan 
MacEachren, and many other cartographers and 
information visualization researchers. Robert 
Harris’s Classification of Scales distinguishes the 
same three types as Bertin but calls them category, 
sequence, and quantitative. 

Visualization researcher Tamara Munzner  
distinguishes tabular, relational, and spatial data; 
then further divides tabular into categorical/ 
nominal and ordered; and finally subdivides ordered 
into ordinal and quantitative (see Data Hierarchy 

above). Using this classification, tabular visualiza-
tions such as GRIDL (page 69) or Gapminder 
(pages 65 and 71) may have categorical/nominal 
or ordered axes. Relational data refer to linkages 
between data records, which may be categorical (e.g., 
“marriage,” “business”; see page 27, Correlations 
and Relationships) or weighted (quantitative), and 
are commonly represented using network visualiza-
tions (see page 62, Network Visualization Types). 
Spatial data (e.g., latitude and longitude informa-
tion) is needed to geolocate records (see page 54, 
Geospatial Visualization Types). 

Stevens’s approach has been adopted here and 
is shown in the right-most column of the below 
table. The title was revised to Data Scale Types to 

match other terminology in the visualization  
framework. Descriptions and examples of the 
different data scale types can be found on the 
opposite page.

Conversions
Simple transformations can make real-world data 
more amenable to analyses and visualizations that 
truly satisfy users’ needs. For example, quantitative  
data scale types can be converted into qualitative 
data scale types, or thresholds can be applied to 
convert interval data into ordinal data. Rankings 
(ordinal) are commonly converted to yes/no cat-
egorical decisions (e.g., with hiring or funding deci-
sions). Typically, this is done in such a manner that 
equal groups result, and different approaches may 
be appropriate for different types of distributions 
(see page 44, Statistical Studies). 

The reverse is possible as well: more qualitative 
data scale types can be converted into more quan-
titative data scale types. For example, Robert P. 
Abelson and John W. Tukey mapped ordinal scales 
onto interval scales and estimated the amount of 
error that resulted. Tukey also discussed situations 
in which interval scales (e.g., measurements from a 
miscalibrated scale) should be converted to a ratio 
scale that behaves more simply. Roger N. Shepard, 
Joseph B. Kruskal, and others developed multidi-
mensional scaling methods to convert ordinal into 
ratio scales. See page 178, References & Credits, 
for details.

Mathematical Operations 
Stevens distinguished types of scale based on the 
type of logical mathematical operations that are 
permissible. Major operations for all four types are 
given in the top-right table. Check marks indicate 
permitted operations, whereas cross-outs indicate 
that particular operations cannot be performed 
with the given data type. All types support deter-
mining equality and inequality (such as by identi-
fying and categorizing the members of a numerical 
series). All but nominal types can be ordered (e.g., 
alphabetically or numerically). Only interval and 
ratio types support determining if differences are 
equal (e.g., 2 − 0 = 4 − 2). Ratio types also support 
operations that determine if aspects of objects (or 
numbers) are equal (e.g., 4/2 = 8/4). The bottom 
row shows the operations used to measure central 
tendency for the different data types (see also page 
44, Statistical Studies).

Limitations
The four scale types do not account for all the data 
that one may encounter or measure. For example, 
percentages (which are bounded at both ends and 

cannot tolerate even arbitrary scale shifts) cannot 
be classified in this system. In his seminal paper, 
Stevens argued for using the four data scale types 
for classifying and selecting permissible statistical  
procedures. A number of textbooks and analysis 
tools implemented his recommendation. However, 
given the fact that the four scale types are not able 
to capture all possible data and that scale types  
can be converted into other types, these automatic 
permissibility rules restrict the possible set of valu-
able analyses and could even lead to the selection  
of inaccurate analyses. 

Applications
Data should never prescribe analyses or visual-
izations. Instead, user needs (translated into the 
questions asked of the data) should influence what 
data is collected and how it is used. For example, if 
a ranking of scholars is desired then nominal data 
variables are inappropriate but ordinal, interval, 
or ratio data variables are necessary (see example 
in section Nominal Scale on opposite page). If 
calculating the arithmetic mean of a variable is 
important then interval or ratio scale data has to 
be acquired.

Documentation
Psychologists emphasize the importance of docu-
menting exactly what data scale has been used to 
acquire any given data, why that scale was devel-
oped (e.g., for intelligence tests), who should com-
plete the scale, how the scale should be used and 
scored (including sample items and values), and the 
scale’s characteristics. Without this information, 
data collected for specific purposes runs the risk of 
being inappropriately used in psychology and other 
fields of science. 

Data Scale Types
Data can be qualitative or quantitative. Qualitative data take on only specific 
values with no values in between and are frequently determined by counting.  
Examples are names or job types. Quantitative data may take on any value 
within a finite or infinite interval and are commonly acquired via measurement. 
Examples are time or counts. In 1946, Harvard psychologist Stanley S. Stevens 
coined the terms “nominal,” “ordinal,” “interval,” and “ratio” to describe a  
hierarchy of data scales. This spread reviews existing works for the classification 
of data scale types. Specifically, it describes and exemplifies Stevens’s data scale 
types and discusses their utility and limitations.

Not everything that counts can be counted, and not everything that can be  
counted counts.
Albert Einstein
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Data Scale Types

Stevens, 1946
Scales of 
Measurement

Bertin, 1967
Level of 
Organization of the 
Components

Harris, 1996
Classification of 
Scales

Munzner, 2011
Visualization 
Principles

Börner, 2014
Data Scale Types

nominal quantitative category categorical/nominal nominal More Qualitative 

ordinal ordered sequence ordinal ordinal

interval quantitative quantitative quantitative interval More Quantitative

ratio quantitative quantitative quantitative ratio

Data Scale 
Types

× × ×
× ×
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mean
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Nominal Scale
A nominal scale (also called a categorical or cat-
egory scale) is qualitative. Categories are assumed 
to be nonoverlapping in that each data variable is 
assigned to one category and no two variables are 
assigned to the same category.

Examples include dichotomous and nondi-
chotomous data. A dichotomous (or dichotomized) 
example is an attribute that can be either “true” or 
“false.” Nondichotomous examples (comprising 
multiple categories) are words or numbers constitut-
ing the names and descriptions of people, places, 
things, or events. Each word or number defines a 
distinct category that contains one or more entities. 
It is possible to have multiple assignments within a 
nominal category (e.g., a person can be bi-racial or 
have multiple nationalities or jobs).

Nominal data can be counted (e.g., the number 
of male/female scholars in an institution or the 
number of scholars per country). The results may 
then be displayed in frequency tables and graphs. 
Shown below is a fictive set of faculty members 
who work on an interdisciplinary research topic at a 
U.S. university and the counts of their departments, 
courses, books, and funding awards.

Mathematical qualitative operations such as 
equal and not equal can be performed (see the table 
on the opposite page, top-right). Although words 
and numbers that label or describe categories can 
be sorted alphabetically, they cannot be ranked 
or mathematically manipulated. No quantitative 
distinction can be drawn among them, as there is 
no intrinsic ranking or order. The mode, or the most 
common item, is allowed as the measure of central 
tendency for the nominal type. The median, or the 
middle-ranked item, makes no sense for the nomi-
nal type of data, because ranking is not allowed. 
Similarly, taking the mean on a nominal variable 
has no meaning. 

Ordinal Scale
An ordinal scale (also called a sequence or ordered 
scale) is qualitative. It sorts or rank-orders values 
representing categories that are based on some 
intrinsic ranking but not at measurable intervals. 
That is, there is no information as to how close or 
distant values are from one another.

Examples include dichotomous and nondi-
chotomous data. Dichotomous examples include 
“sick” versus “healthy” or “guilty” versus “innocent.” 
Nondichotomous examples include days of the week 
or months in a year; job ranks within a workplace; 
degrees of satisfaction and preference rating scores 
(as with a Likert scale, offering strongly agree, 
agree, neutral, disagree, and strongly disagree 
choices that users can check; see below); or rankings 
such as low, medium, and high. 

For ordinal string variables, alphabetical sorting 
might be applied (e.g., when listing index terms). 
However, that understanding cannot be applied 
when data follow a nonalphabetical order, as do the 
days of the week (see below; note that in the United 
States the week starts on a Sunday).

Mathematical qualitative operations, such  
as determining when figures are equal or not  
equal, can be performed; the mode and median  
(or middle-ranked item) but not the mean  
(or average) can be calculated (see page 44, 
Statistical Studies). 

Note that most psychological measurements, 
such as of opinions or IQ scores, are ordinal. That 
is, the mean and standard deviations have no  
validity; only comparisons are valid. There exists no 
absolute zero, and a ten-point difference may carry 
different meanings at different points of the scale. 

Interval Scale
An interval scale (also called a value or discrete 
scale) is a quantitative numerical scale of measure-
ment, whereby the distance between any two adja-
cent values (or intervals) is equal, but the zero point 
is arbitrary. Interval-type variables are also called 
scaled variables or affine lines (in mathematics).

Examples are the Celsius and Fahrenheit 
temperature scales, which have an arbitrarily 
defined zero point; see the below comparison of 
both scales with the Kelvin ratio scale. Similarly, 
an interval scale is used to measure the distance 
between calendar dates within an arbitrary epoch 
(such as the AD year numbering system).

Scores on an interval scale can be added  
and subtracted; for example, the time interval 
between the first days of the years 1981 and 1982  
is the same as that between 1983 and 1984— 
namely, 365 days. Interval scale values cannot be 
meaningfully multiplied or divided; for example,  
20°C cannot be said to be “twice as hot” as 10°C.  
However, ratios of value differences can be 
expressed; for example, one difference can be twice 
another (see the bars for 600- and 300-year time 
durations in the figure below).  

The mode, median, and arithmetic mean can be 
calculated to measure the central tendency of inter-
val variables, whereas measures of statistical disper-
sion include range and standard deviation. 

Ratio Scale
A ratio scale (also called a proportional or continu-
ous scale) is a quantitative numerical scale. It repre-
sents values organized as an ordered sequence, with 
meaningful uniform spacing, and has a unique and 
nonarbitrary zero point. 

Most physical measurements—including length 
(see ruler below), weight, height, mass, (reaction) 
time, energy, and intensity of light—are made on 
ratio scales. Periods of time can be measured on a 
ratio scale, and one period may be correctly defined 
as double another. The Kelvin temperature scale (see 
image at left) is a ratio scale because it has a unique, 
nonarbitrary zero point called absolute zero—even 
if that point is purely theoretical. Other examples of 
measurements would be the counts of any published 
papers, coauthors, or citations. 

In physics, two types of ratio scales are distin-
guished: fundamental (e.g., length or weight) and 
derived (e.g., density or force). Examples are  
population counts (e.g., per city) and population  
density counts (i.e., population per unit area or 
unit volume), respectively. The former may be 
represented by proportional symbol maps that 
use size-coded geometric objects to represent the 
number of inhabitants per city. Population density 
is commonly represented by choropleth maps (see 
page 54, Geospatial Visualization Types).

A value of zero has special meaning; for  
example, with respect to age the actual zero point 
allows one to say that a ten-year-old is twice the 
age of a five-year-old. Qualitative operations such 
as addition, subtraction, multiplication, and divi-
sion can be performed (e.g., length measurements 
can be converted from inches to feet or from feet 
to meters via multiplication with a constant). 
Statistical dispersion, standard deviation, and the 
interquartile range can all be calculated. In fact, 
all statistical measures are allowed because all 
necessary mathematical operations are defined for 
the ratio scale.

Descriptions and Examples

Days of the Week

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Alphabetical Sorting

Friday

Monday

Saturday

Sunday

Thursday

Tuesday

Wednesday

Entity Type Count

Books 205

Courses 27

Departments 53

Faculty 55

Funding Awards 501

Part 2: Envisioning Science and Technology      29



Framework 
The table below lists and compares major 
approaches to grouping and naming different 
types of visualizations. Jacques Bertin’s  
Semiology of Graphics distinguishes diagrams, 
maps, and networks. Robert L. Harris distin-
guishes tables, charts (e.g., pie charts), graphs 
(e.g., scatter plots), maps, and diagrams (e.g., block 
diagrams, networks, Voronoi diagrams). Yuri 
Engelhardt distinguishes proportionally divided 
space, space with categorical or metric axes,  
map space, and text space. Ben Shneiderman’s  
taxonomy organizes visualizations according to 
data types: linear (1D), planar (2D), volumetric  
(3D), multidimensional (nD), temporal, tree, 
network, and workspace. Microsoft Excel, a tool 
widely used, supports the creation of tables and 
diverse charts, including pie and doughnut charts 
as well as line and bar graphs. The set of visualiza-
tion types adopted in this Atlas covers five types: 
table, chart, graph, map, and network graph (see 
descriptions and examples on right). 

Conversions
Simple modifications can transform one visualization 
type into another. For example, changing the quan-
titative axes of a graph into categorical axes results 
in a table (see the GRIDL visualization on page 69). 
Interpolating discrete area topic maps as continuous, 
smooth-surface elevation maps makes them look like 
geospatial maps (see In Terms of Geography in Atlas of 
Science, page 103 and page 58, Isoline Map).

Combinations
Most data sets can be visualized in a variety of ways 
(see examples on right and page 66, Combination). 
In some cases, the different views may be coupled to 
support data exploration (see page 68, Interaction). 
For example, human migration data may be depicted 
using a table of top-N migration flows and a world 
map with flow overlays; selecting a flow value in the 
table highlights the corresponding link in the map. 
That is, each visualization reveals a different aspect of 
the data set, which in turn leads to different insights 
(see page 72, Validation and Interpretation).

Tables 
A table is an ordered arrangement of rows and  
columns in a grid. The space at which one row and 
column intersect is called a cell. Data values are 
stored in cells and can be indexed by the respective  
rows and columns. In most cases, each row 
holds one data record (see page 26, Naming 
Conventions). Columns are typically used to store 
data values for different data variables. The first row 
may be used as a header row, with column names 
consisting of a word, phrase, or numerical index. 
Meaningful header names help infer meaning about 
a dataset. Table elements can be color-coded or 
size-coded. They can also be sorted, grouped, and 
segmented in many different ways. 

Table types include frequency, percentage, 
summary, and quartile tables (see Robert Harris’s 
Information Graphics: A Comprehensive Illustrated 
Reference for more types). Pivot tables are a data 
summarization that can be used to sort, count, 
total, average, or cross-tabulate data stored in  
one table.

Some tables support interactive selection and 
sorting of rows and columns as well as visual 
encoding. Cells may contain proportional symbols 
or small charts/graphs (see example on page 66 in 
top-right). Line overlays can be used to show rela-
tions between table cells.

Charts
Charts visually depict quantitative and qualitative 
data without using a well-defined reference system. 
They are supported by many spreadsheet programs 
and are widely used in information graphics.

Examples are pie charts or doughnut charts. The 
sequence of “pie slices” and the overall size of a “pie” are 
arbitrary; the pie-slice angles and area sizes represent a 
percentage of the whole (i.e., the sum of all slices should 
be meaningful). Examples of a pie chart and dough-
nut chart with values for three years are shown below. 
Note that human comparisons made using angles or 
areas are less accurate than comparisons made using 
length (see page 34, Graphic Variable Types). 

Bubble charts and tag clouds (also called word 
clouds) represent each data record with a randomly 
positioned geometric object or word (see below 
examples). However, to achieve the most effective 
use of space or to establish some discernible pattern, 
position may be specified. For instance, larger items 
(objects or words) may be set closer to the center, 
and/or words may be arranged to follow an alpha-
betical sequence.

In these and other charts, graphic variable 
types such as area size, font size, and color may 
be used to encode additional properties (see page 
34). Typically, quantitative data variables are used 
to size-code, whereas qualitative data variables are 
used to color- or shape-code. 

Visualization Types
Many different types of visualizations have been developed by scientists,  
engineers, designers, artists, and other scholars. Diverse proposals have also been 
made on how best to organize visualizations into different types—for instance, 
based on user task, data shown, reference system employed, data overlay provided, 
deployment used (hand-drawn versus computer-generated), or key insights 
gleaned. A pragmatic solution is presented here that uses the type of reference 
system employed as the main criterion. The final set of types selected comprises 
tables, charts, graphs, maps, and network graphs, as explained and exemplified  
in this double-page spread. 

The best way to learn about visualizations is to make them.
Martin Wattenberg

Visualization Types

Bertin, 1967 Harris, 1996 Shneiderman, 1996 Engelhardt, 2002 Tool: MS Excel Börner, 2014
table tables table

diagram chart proportionally divided 
space, random space

pie, doughnut chart

diagram  graph linear (1D), planar (2D), 
temporal, volumetric (3D), 
multidimensional (nD)

timeline (metric or ordered), 
metric axis, ordering axis, 
categorization axis

column, line, bar, area, 
surface, scatter, bubble,  
radar, stock

graph

map map map space (metric or 
ordered)

map

text space

network diagram tree, network network layout  
(tree or 
network)

workspace
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Pie Chart                                   Doughnut Chart

Bubble Chart

Tag Cloud

Descriptions and Examples

Score Count
96-100 5

91-95 34

86-90 50

81-85 23

76-80 11

Below 75 1

Score Count
96-100 5

91-95 34

86-90 50

81-85 23

76-80 11

Below 75 1

Alternating Rows Table Groupings Table

Score Count Relative
Count, %

Cumulative
Count

96-100 5 3.85 5

91-95 34 26.15 39

86-90 50 38.46 89

81-85 23 17.69 112

76-80 11 8.46 123

Below 75 1 0.77 124

Frequency, Percentage, and Summary Table
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Graphs 
A graph plots quantitative and/or qualitative data 
variables using a well-defined reference system, 
such as coordinates on a horizontal or vertical 
axis. Binning, extrapolation, and smoothing can 
be applied to aggregate data so that larger data 
amounts can be more easily understood (see page 
44, Statistical Studies, and page 48, Temporal 
Studies—“When”). Relationships between data 
records can be overlaid as links. 

Many different graph types exist (see page 46, 
Statistical Visualization Types). Among them are 
line graphs (see below and discussion on page 50), 
bar graphs, and the stacked versions of each. Scatter 
plots and bubble graphs (see Gapminder visualiza-
tions on pages 56 and 71) are widely used. 

Parallel coordinate graphs plot multiple data 
values per record using multiple axes. Links inter-
connect all values per record (see discussion of this 
graph on page 47).

Crossmaps (page 58, Topical Visualization 
Types, and Atlas of Science, page 94) use a combina-
tion of quantitative and qualitative axes (e.g., topics 
versus time). Geometric symbols may be overlaid 
(e.g., circles might represent papers on different 
topics published in different years) and be sized 
according to some numerical property (e.g., the 
number of citations per paper). Symbols may also 
be hue-coded to indicate additional attribute values 
(e.g., red for review paper, green for research paper). 
Finally, linkages may be used to denote relations 
(e.g., citations between papers).

Maps 
Maps display data records visually according to their 
physical (spatial) relationships and show how data  
are distributed geographically. They are used to show 
the location, proximity, and distribution of data 
records. The geolocation of a data record requires 
the existence of a data variable that defines a loca-
tion, such as a postal address or a latitude/longitude 
data pair. Additional data variables can be visualized 
using graphic variable types (page 34) such as area 
size, font size, and color. Relationships between data 
records are commonly displayed using links.

Major map types include cartograms, choropleth 
maps, relief maps, and proportional symbol maps 
(see page 24, Needs-Driven Workflow Design, and 
page 54, Geospatial Visualization Types). 

The Country Codes of the World map below shows 
245 country codes—the top-level domain codes or 
extensions used at the end of any internationally 
based URL or email address. Each two-digit coun-
try code is mapped according to the location of the 
country or territory it represents and color-coded  
by continent. It is also sized relative to the popula-
tion of that region (with the exception of China  
and India, whose codes have been scaled at only  
30 percent of their population size in order to fit  
the layout).

Data overlays may be either continuous or discrete 
and may display data for all areas or for selected areas 
only. Shown below is a choropleth map (page 54) 
that visualizes the potential of rooftop surface areas 
for solar energy generation. Dark brown denotes 
low potential; yellow indicates optimal potential. 

Trees
Tree layouts are used to display file directories, 
family trees, tournament trees, or classification 
hierarchies. 

Trees may be represented as indented lists, 
dendrograms, node-link trees (see the tree view 
below and beneath that a force-directed layout 
of a different tree), circle packings (see page 62, 
Enclosure Trees), or treemaps (see below and page 
62). The latter two use spatial nesting to represent 
children-parent relationships.  

Networks
Networks may depict social networks, concept or 
topic maps, food webs, or the interconnectivity of 
Internet servers, among others. 

Networks may be represented by one-dimensional 
arc graphs (see below), tabular matrix diagrams, 
bimodal network visualizations, axis-based linear 
network layouts (see page 63, Hive Graph), or 
force-directed layouts (see below). The first four 
types use well-defined reference systems (e.g., nodes 
may be sorted by a node attribute), which means 
the axes are labeled and their value range is known. 
Force-directed layouts have no axes. In fact, the 
layout is unaffected by mirroring or rotation; only 
the distances between pairs of nodes matter (see 
also page 62, Network Visualization Types).

Network Layouts 
Network layouts use nodes to represent sets of data records, and links connecting nodes to represent  
relationships. Different representations exist for tree and network structures.

Nodes may be positioned in space according to their attribute values (e.g., publication year or geolocation), 
the relationships between records in terms of similarity or distance between attribute values (e.g., number 
of shared words), or a combination of both. Many different network layout algorithms exist (see page 58, 
Network Visualization Types). Node size or color value is used to encode additional quantitative variables, 
whereas shape, color hue, or pattern commonly represent qualitative data variables.

Edges may be weighted or unweighted, directed or undirected, symmetric (reciprocated), or asymmetric. 
They may be of different types and can have additional qualitative or quantitative variables. Edge shape, color 
hue, and pattern (e.g., dotted or dashed) may be used to encode qualitative data variables and directedness; size 
(line width) and color value are used to encode quantitative variables. In some cases, record relations are used 
exclusively to compute the position of nodes, though they are not directly visualized.

Arc Graph

Tree View

Force-Directed Layout

Treemap

Force-Directed Layout

Proportional Symbol Map Showing Country Codes  
of the World

Choropleth Map Using Roof Top Grid Layout

Line Graph

Parallel Coordinate Graph
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Framework
Graphic symbols (also called geometric elements 
or geometric forms) are small graphic representa-
tions that are used to represent data records in a 
visualization. They encode different data variables 
via graphic variable types (page 34) such as spatial 
position, size, or color.

Different approaches to identifying and naming 
graphic symbol types are shown in the table below. 
The original titles are given in italics. Jacques 
Bertin’s pioneering Semiology of Graphics identified 
and used three “Geometric Elements:” point, line, 
and area. Cartographer Alan MacEachren adopted 
Bertin’s framework and successfully used it to 
explain how geospatial maps work.

Robert Harris expanded the set by adding 
volume and pictorial graphic symbol types to 
what he called “Symbol Types,” of which his book 
Information Graphics: A Comprehensive Illustrated 
Reference provides detailed descriptions and numer-
ous examples. He cleanly distinguishes two types  
of points: geometric and pictorial.

As part of his Morphological Elements of Visual 
Language, Robert E. Horn distinguishes three 
general types of graphic symbols: shapes, words, and 
images. He further lists different subtypes for each, 
as words can be “single words, phrases, sentences, 
[or] blocks of text.” Horn distinguishes four types of 
shapes: point, line, abstract shape, and space between 
shapes. The latter type is not shown in the table 
below as it appears to be redundant when designing 

data visualizations—given the spatial position and 
visual encoding (e.g., size, of two graphic symbols, 
their distance can be computed). 

Yuri Engelhardt—in his comparison and “trans-
lation” of numerous, discipline-specific approaches 
by key authors ranging from Edward Tufte, Jacques 
Bertin, and Stuart Card to Alan MacEachren and 
George Lakoff—identified what he called the “univer-
sal ‘ingredients’ of visual representations,” consisting 
of (1) meaningful spaces—roughly equivalent with 
visualization types (page 30), (2) ‘Visual Objects,’ 
listed in the table below, and (3) visual properties 
(see page 34, Graphic Variable Types). Three of his 
visual objects were omitted from the table below, as 
they do not encode data variables: container—refer-
ring to the outer boundaries of a visualization; grid—
used to improve readability of data values; and 
mark—used to highlight specific values. 

In The Grammar of Graphics, Leland Wilkinson 
argued for the five “Geometric Forms” that include 
surface symbols but not linguistic and pictorial 
graphic symbol types.  

The final set of graphic symbol types that are 
used in this Atlas is given in the rightmost column of 
the table. Three general types of graphic symbols are 
distinguished: geometric, linguistic, and pictorial. 
Descriptions and examples are given on the opposite 
page. For more examples, see the Graphic Variable 
Types versus Graphic Symbol Types table (pages 36–39).

Instantiation
Each graphic symbol type has diverse attribute  
values, so-called graphic variable types (page 34), 
that can be used to encode additional data attribute 
values. MacEachren’s instantiations (which he calls 
implantations) of different graphic variable types 
for different symbol types are shown in the figure 
below. Columns represent the three graphic symbol  
types: point, line, and area. The rows represent  

different variables of the image such as  
position, size, and value; and differential 
variables such as texture, color, orientation, and 
shape. Instantiations of a substantially expanded set 
of graphic variable types and graphic symbol types 
can be found in the Graphic Variable Types versus 
Graphic Symbol Types table on pages 36–39. 

Combinations
Multiple graphic symbol types can be combined. For 
example, a node in a network may be represented by 
a labeled circle—a combination of an area geometric 
symbol and a text linguistic symbol (see page 53, The 
Debt Quake in the Eurozone). Statistical glyphs such 
as pie charts can be combined with geometric lines to 
render the nodes and edges in a network graph (see 
page 67, U.S. Healthcare Reform). Gestalt principles 
such as proximity, continuity/connectedness, com-
mon region, or combinations thereof can be applied 
to visually interlink different graphic symbol types.

Analogously, different graphic variable types can 
be applied and combined. Exemplarily shown below 
is a geospatial map of Los Angeles with an overlay 
of statistical glyphs that resemble faces. 

These so-called Chernoff faces (page 33) map 
different data variables onto facial expressions, 
such as head shape, mouth type, and eye type. 
Furthermore, a face can have different graphic 
variable types, here color hues. Each of the three 
facial expressions and the graphic variable type has 
three possible values resulting in 3 x 3 x 3 x 3 = 81 
possible combinations.

Graphic Symbol Types 
Cartographers, semioticians, statisticians, and others have worked to enumerate the 
basic, primary graphic symbols used to convey information on a map or visualization. 
The key types discussed here comprise geometric symbols (e.g., point, line, area equal-
ing a bounded polygon, surface, volume), linguistic symbols (e.g., text and numerals), 
and pictorial symbols (e.g., images and statistical glyphs). They can designate location, 
convey qualitative and quantitative information, highlight specific information, 
help to identify and differentiate, depict form, represent multiple data variables via 
miniature graphs, or serve as enclosures. Each symbol has different graphic vari-
ables that can be used to encode additional quantitative and qualitative data; see 
the subsequent spreads in Graphic Variable Types (page 34) and the examples in 
the Graphic Variable Types versus Graphic Symbol Types table (pages 36–39). 

In the final analysis, a drawing simply is no longer a drawing, no matter how self-
sufficient its execution may be. It is a symbol, and the more profoundly the imaginary 
lines of projection meet higher dimensions, the better.
Paul Klee 
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Visual Objects
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Geometric Symbols 
Geometric symbols are distinguished by the dimen-
sionality they establish, involving points, lines, areas, 
surfaces, and volumes. They are easy to draw (to posi-
tion, size, and color-code) using existing tools and 
easy to read and compare—even at very small sizes. 
Multiple symbols of the same type can be used, 
for example, to show data density. Disadvantages 
include the limited selection of symbols and the 
need to explain their usage in the legend.

In traditional geometry, a point is nothing but a 
location in space, lacking size and any other visual 
encoding; a line has a given position and length 
but no width or color. In compliance with prior 
work that aims to define graphic symbol types and 
developed with the intention of using geometric 
symbols for encoding data variables, the frame-
work presented here assumes that point, line, area, 
surface, and volume symbols can be size-, color-, 
and shape-coded; see examples in the Graphic 
Variable Types versus Graphic Symbol Types table 
(pages 36–39). 

Points
A point symbol is commonly used to visualize data 
records that exist at a discrete point location, such 
as a postal address. Points are used to specify loca-
tion and show density distribution. Additional data 
variables are encoded using graphic variable types 
(page 34).

Lines
A line connects two points. Line symbols are 
applied to denote linear geographic objects such as 
streets, rivers, boundary lines, or geological faults 
as well as phenomena in motion, such as hurricane 
and tornado paths or ocean currents. Lines may be 
directed, as in network graph visualizations (page 
62). This is commonly indicated through the use of 
arrows or line shapes, which may be read clockwise 
from source to target mode (see examples, below-
left). When using arrowheads as line endpoints, 
nodes that have many incoming links may appear 
to have a larger size (see below-middle); this can be 
resolved by placing arrowheads at a distance from 
the destination nodes (see below-right). 

Lines might be weighted and labeled and can be  
bundled (see page 62, Network Visualization Types).

Areas
Area symbols include bounded polygons, used to 
represent country or state boundaries (see the U.S. 
Map of Contiguous States on page 24). Another type 
of area symbol is an isoline (also called an isopleth 
or isogram), which on a base map interconnects 
points that have the same value (e.g., places on a 
map registering the same amount or a given ratio  
of any given phenomenon, such as elevation or  
population density). More widely spaced lines  
indicate a gentle slope, whereas dense lines denote  
a steep slope (see below).

Areas can be qualitatively differentiated using 
graphic variables to show nominal differences (e.g., 
ethnic maps or vegetation and soil maps). Areas can 
be quantitatively differentiated using the choropleth,  
isoline, or cartogram methods (see page 54, 
Geospatial Visualization Types).

Surfaces 
Surface symbols, such as surface plots, have a three-
dimensional surface that connects a set of data 
points. An example is a surface plot of topics over 
time (see below and page 58, Crossmap).

Volumes
Volume symbols are also three-dimensional. They 
are used in bar graphs or Stepped Relief Maps 
(page 54). Examples include In the Shadow of 
Foreclosures (page 53) and On Words—Concordance 
(page 57).

Linguistic Symbols
Linguistic symbols, such as letters, numbers, or 
punctuation marks are widely used. One example 
is the use of chemical elements (i.e., symbols of 
the periodic table, such as Cu, Au, Zn, or Fe) or 
abbreviations for country names (e.g., CA, DE, FR, 
or US per the ISO two-letter code system), which 
most viewers would understand without the need of 
a legend (see page 31, Country Codes of the World).

The exact location and size of linguistic symbols 
tends to vary due to the differences in letter shapes; 
their proper placement can be aided by rendering 
linguistic symbols inside of geometric symbols (see 
page 53, The Debt Quake in the Eurozone).

Either serif (e.g., Cambria) or sans serif (e.g., 
Arial) typefaces may be used. Some type fonts (e.g., 
Caslon) have uppercase and lowercase numbers (see 
example below). 

A typeface can be proportional, containing glyphs 
of varying widths (e.g., Garamond), or monospaced, 
using a single standard width for all glyphs in the 
font (e.g., Courier). Using all uppercase letters in 
labels should be avoided, as reading all capitals takes 
more time than reading sentence-case text. 

Font families refer to groups of related fonts that 
vary in weight, orientation, and width, but not in 
design. For example, Times New Roman, Times 
New Roman—Italic, and Times New Roman—
Bold are all members of the Times font family.

Fonts can be printed in different sizes or colors; 
formatted with underlining, outlining, or shading;  
and set in superscript or subscript positions (see 
page 34, Graphic Variable Types). 

Some type fonts render pictorial symbols that 
can encode additional data variables via (partially) 
filled shapes (see examples below).

Text can be left or right aligned, centered, or 
justified. Numbers are commonly aligned vertically 
on the decimal point. 

Pictorial Symbols 
A pictorial symbol (also called an iconic symbol, 
sign, or pictogram) is an arbitrary or conventional 
mark used to represent complex notions, such as 
quantities, qualities, or relations. Pictorial symbols 
can be concrete reproductions of the objects they 
represent; specialized, such as statistical glyphs 
or the symbols used in weather maps; or abstract, 
composed of different geometric shapes. They can 
be shown from different perspectives, such as in 
profile or as a top view, and are typically positioned 
according to their centroid or mass point.

Images and Icons
Image symbols are drawn reproductions of the objects 
they represent. They tend to be easy to read and to 
understand. The larger their size and geometric com-
plexity, the fewer that can be placed in a visualization.

Icons are specialized symbols designed to convey 
specific meaning. They are an efficient means of 
encoding information. Typically, a legend must be 
presented to signify what any given icon represents.

Statistical Glyphs
Statistical glyphs (also called miniature graphs) have 
no titles, labels, check marks, or grid lines (see page 
46, Statistical Visualization Types). Examples are 
line graphs, profile graphs, histograms, bar graphs, 
and radar graphs (see below, from left to right), each 
of which can be used to encode 10 to 20 quantitative 
or qualitative variables. Glyphs are frequently used 
in combinations (page 66), small multiples (pages 
66, 67, and 69), or matrix displays (page 66).

Two types of statistical glyphs that are 
more widely known and used are sparklines 
and Chernoff faces (see page 46, Statistical 
Visualization Types).

Sparklines are numerically dense, word-sized 
graphs that show data variation over time (see the 
miniature bar graph below).

Chernoff faces are pictorial symbols that map 
multiple data variables to facial expressions (see  
page 32, Life in Los Angeles). Most humans know 
how to read faces and can read data encoded in 
Chernoff faces.

Descriptions and Examples
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Framework
Various theories exist on how to identify and name 
graphic variable types. The table below lists the 
approaches proposed by leading experts. Cartographer 
and theorist Jacques Bertin conducted extensive 
landmark work as early as 1967 and later expanded 
on that research. Cartographer Alan MacEachren 

adopted Bertin’s variable types, but also added clarity,  
which may be broken down into three subcomponents: 
crispness, resolution, and transparency. Crispness is 
the ability to selectively and dynamically filter for  
edges, fill, or both. Resolution defines how sharp 
or pixilated a given object appears and can be used 
to represent uncertainty in data. In his book Visual 

Language, political scientist Robert 
E. Horn added illumination and 
motion. In The Grammar of Graphics, 
Leland Wilkinson developed a 
complete grammar for the design of 
graphs and tables of graphs and intro-
duced a hierarchical organizational 
schema for graphic variable types 
with superclasses form, color, texture, 
and optics. The rightmost column of 
the table shows the graphic variable 
types adopted in this Atlas. Spatial 
and retinal properties are distin-
guished. The former equate position-
ing in a three-dimensional space.  
The latter can be subdivided 
into form, color, texture, and 
optics—groupings that conform to 
Wilkinson’s superclasses. Extending Wilkinson’s 
schema, this table includes motion. It also adds  
a number of new graphic variable types, namely  
those that are preattentively processed even before 
attention is fully focused on it (e.g., curvature, angle,  
closure, stereoscopic depth) and those that conform 
to Gestalt principles (e.g., motion variables).

Combinations
In some cases, only one data variable is used to 
visually encode a graphic symbol, called a “univari-
ate” symbol. Typically, multiple visual variables, or 
“multivariate” symbols, are mapped. The mapping 
of data variables to graphic symbols should be con-
sistent per visualization. For instance, when data 
is identical, it should be consistently represented 
by the same chosen graphic symbol and its graphic 
variable encoding. Note that most attribute combi-
nations are independent of each other (such as with 
shape and color hue); in some cases, combinations 
may be interdependent, such as when increases in 
symbol size conflict with position constraints (e.g., 
keeping all symbols on the canvas).

Perception Accuracy 
In 1986, Jock D. Mackinlay published a ranking of 
perceptual tasks for different data scale types (page 
28), as shown in the top-right figure. He ordered 
variables top-down according to how accurately 
humans perceive data at standard levels of measure-
ment. The ranking was designed to help with the 
prioritization and matching of data scale types to 
graphic variable types. The six grayed-out graphi-
cal variable types are not relevant to the given data 
scale types. For all data scale types, Position is most 
accurately perceived. For Nominal data, color hue is 
second best. Qualitative data uses density; Ordinal 
data uses length.

Different studies have since been conducted  
to ascertain which graphic variable types most 
accurately convey quantitative data variables. 
William Cleveland and Robert McGill conducted 
a number of visual perception studies to determine 
what people can accurately decode. Robert Spence’s 
visual summary of Cleveland and McGill’s results  
is shown below. Note that only paired comparisons 
(e.g., Position versus Length) have been validated. 
Judging magnitudes differs from identifying 
outliers. The top of the image shows the tasks that 
are performed more accurately. A noticeable gap 
exists between the accuracy at which Angle or 
Rotation and Area can be judged. There is an even 
larger gap in accuracy when judging Volume and 
Color Hue or Color Value.

Graphic Variable Types 
The geometric, linguistic, and pictorial graphic symbol types discussed in the 
previous spread can be used to encode additional data variables using graphic 
variables. The key approaches to defining and grouping graphic variable types are 
compared here in an attempt to provide a Rosetta stone for interlinking different 
approaches and theories and to arrive at a set of well-defined and exemplified  
key types (see opposite page). Psychological results on the accuracy of graphic 
variable types are also discussed, as they help to guide the selection of graphic 
variable types that can be easily read and distinguished.

All the pieces are here—huge amounts of information, a great need to clearly and 
accurately display them, and the physical means for doing so. What is lacking is a deep 
understanding of how best to do it.
Howard Wainer

M
ot

iv
at

io
n

D
ep

lo
y

In
te

rp
re

t 
An

al
yz

e 
& 

Vi
su

al
ize

Ac
qu

ire
Fr

am
ew

or
k

Graphic Variable Types

Bertin, 1967 Bertin, extended MacEachren, 1995 Horn, 1998 Wilkinson, 2005 Börner, 2014
location location location: in 2D 

or 3D
position

sp
at

ia
l

po
sit

io
n x

y
z

size (small vs. large) size size: area, 
thickness

form: size

re
tin

al

fo
rm

size

shape (circle vs. triangle) shape form: shape shape

orientation  
(up vs. down)

orientation orientation form: rotation rotation
curvature
angle
closure

color value  
(light vs. dark red)

color value color: value color: brightness

co
lo

r

value

color hue (red vs. blue) color hue color: hue color: hue hue

color intensity 
(saturated vs. dull)

color saturation color: saturation saturation

texture 
(spaced vs. dense)

pattern arrangement 
(striped vs. crossed)

texture texture texture: granularity, 
pattern, orientation

te
xt

ur
e

spacing  
granularity 
pattern  
orientation  
gradient

crispness optics: blur

op
tic

s

blur

resolution

arrangement

transparency transparency transparency transparency

illumination shading
stereoscopic 
depth

animated: speed motion

m
ot

io
n

speed
velocity

animated: rhythm rhythm

position

density

color saturation

color hue

texture

connection

containment

length

angle

slope

area

volume

 shape

position

length

angle

slope

area

volume

density

color saturation

color hue

texture

connection

containment

shape

Quantitative

Interval/Ratio

Qualitative

Nominal Ordinal

position (x,y,z)

color hue

texture

connection

containment

density

color saturation

shape

length

angle

slope

area

volume

34      Part 2: Envisioning Science and Technology



Spatial 
Spatial position refers to the location of a record in 
a one- to three-dimensional space; see the Spatial 
rows in the Graphic Variable Types versus Graphic 
Symbol Types table (pages 36–37).

Retinal
Retinal variable types refer to all nonspatial proper-
ties; see the Retinal rows in the same table (pages 
36–39).

Form
Form is defined as the visible shape or configuration 
of a graphic symbol.

Size refers to the scaling of graphic symbols and 
is commonly used to encode additional quantitative 
data variables, to attract attention, define impor-
tance, and support comparisons. Symbols can be 
size-coded by absolute data values, apparent magni-
tude values, or values that discriminate data ranges. 

Shape comes in three basic types: geometric  
(e.g., triangles, squares, circles), natural (e.g., hands, 
trees, animals), and abstract (e.g., icons, glyphs).  
A legend must be provided to guide interpretation.  
Whenever possible, existing visual “grammar” 
systems should be used.

Rotation (also called angle or slope) refers to 
the orientation of graphical symbols (at any angle 
within the full rotation of 360 degrees, see below). 
It can be used to encode qualitative information 
(e.g., live, standing tree and dead, fallen tree, page 
37) and quantitative information (e.g., clock face). 

Curvature refers to the degree to which a graphic 
symbol is curved (see below). 

Angle refers to the space between two intersect-
ing graphic symbols at or close to the point at which 
they intersect. It is usually measured in degrees (see 
examples in the subsequent spread).

Closure is a graphic variable that indicates how 
much a circle or other geometric figure is closed.

All these six form attributes are preattentively 
processed; juncture and parallelism are not (see 
example above).

Color
The color of an object is determined by the measure  
of its value, hue, and the saturation of light being 
reflected from or emitted by it. An HSV (hue,  
saturation, value) color model is shown below. 

Color is often used to convey importance or 
attract attention to specific symbols. It can help 
to alter the effects of camouflage (e.g., expose red 
cherries in a tree), develop an understanding of 
material properties (e.g., the condition of food or 
tools), and support comparisons. It can also be used 
to document nature (e.g., blue lakes in maps) and 
to generate or invoke emotions ranging from warm 
and active to cold and passive. Color is less effective 
in displaying how objects are positioned in space, 
how they are moving, or what their shapes are.

Value (also referred to as brightness, shade, 
tone, percent value, density, intensity, and lumi-
nance) relates to the amount of light coming from 
a source or being reflected by an object. It indicates 
how dark or light a color looks (see page 36 for an 
example of a gradient that ranges from white to 
black). The ratio between the minimum and maxi-
mum brightness values in an image is also called a 
contrast ratio. 

Hue (also called tint) refers to the dominant 
wavelength of a color stimulus. It is commonly used 
to represent qualitative data. However, if quanti-
tative data (e.g., terrain heights) is being repre-
sented, the data should be carefully binned and a 
meaningful color sequence selected (e.g., blue lakes 
set against green forests or brown mountains set 
against the white of snow-covered mountaintops).

Saturation (also called intensity) refers to how 
much hue content is in the stimulus. Monochromatic 
hues are highly saturated. Completely desaturated  
colors constitute the grayscale, running from 
white to black, with all of the intermediate grays 
in between. More highly saturated (purer) colors 
appear in the foreground, whereas less saturated 
(duller) colors fade into the background. 

Texture
Texture relates to the surface or “look and feel” of 
an object. It adds depths and visual interest. Printed 
visualizations inherit the texture of the material on 
which they are printed. Those displayed onscreen 
have a designed texture that is made up of smaller 
graphic elements (lines, dots, shapes, etc.) set out 
in a consistent pattern. Texture properties comprise 
spacing, granularity, pattern, orientation, and gra-
dient; these are explained and exemplified for dif-
ferent geometric symbol types on pages 38–39.

Spacing (also called density) refers to the amount 
of space between the graphic symbols that make up 
a texture (see below). 

Granularity (also called coarseness) indicates the 
size of graphic symbols, while the ratio of figure to 
ground (or ratio of black symbols to white back-
ground) remains constant (see below). 

Pattern refers to the type of graphic symbols 
used (e.g., dots, lines, and solids as well as flags or 
data-generated symbols; see below). Textures with 
linear components (e.g., grids) are frequently used 
to reveal surface shapes. Background images (e.g., 
satellite images or aerial photographs) are used to 
provide context. 

Orientation refers to the rotation or incline of 
graphic symbols. They may be perfectly horizontal 
or vertical, or diagonal at any angle within the full 
rotation of 360 degrees.

Gradient is used to indicate an increase or 
decrease in the magnitude of a property and also to 
show perspective (see below). 

Optics
Optical properties can be used to indicate data 
uncertainty, deal with overlaps, emphasize struc-
ture, and attract attention. 

Blur (also called crispness or resolution) is a 
measurement of discernable pixels. The fewer the 
pixels in any given visualization, the more blurred 
(or less clear) the image. Blur has been proposed by 
MacEachren as a means to depict data uncertainty. 

Transparency (also called opacity or translu-
cence) refers to the visibility of an object. Solid 
graphic symbols will stand out but may also overlap. 
Transparency can improve readability as it makes 
occlusions easier to detect.

Shading, related to illumination, refers to the 
darkened area or shape on a surface that is produced 
when a body comes between rays of light and that 
surface. It can be used to emphasize structure and 
to attract attention. It also helps to reinforce our 
perception of the location of light sources and 
objects. An even stronger effect is produced with 
motion (see discussion below). In fact, shadow 
motion can serve as a greater depth cue than a 
change in size due to perspective. Shadows are most 
effective when cast to a nearby surface. However, as 
shadows can interfere with other displayed informa-
tion, they should be rendered with blurred edges.

Stereoscopic depth can be used to create or enhance 
the illusion of depth in a visualization. Two images 
are needed—one for each eye. The depth variance 
is encoded in the differences between the two views 
(see the example of intertwining rings below). 

Motion
Graphic variable types that require moving objects 
are difficult to exemplify in print; yet they are 
highly effective in interactive visualizations. 

Speed refers to the rate at which a set of objects 
moves (but not the direction of movement). 

Velocity is a vector quantity that captures the 
speed and direction of a set of moving objects. 

Rhythm (also called flicker) refers to regular, 
repeated pattern changes in spatial position or 
retinal variables. It is highly effective for attracting 
attention (e.g., to alert users of dangerous situations).

Descriptions and Examples
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Geometric Symbols Linguistic Symbols 
Text, Numerals, Punctuation Marks

Pictorial Symbols 
Images, Icons, Statistical GlyphsPoint Line Area Surface Volume
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Graphic Variable Types Versus Graphic Symbol Types (continued)

Geometric Symbols Linguistic Symbols 
Text, Numerals, Punctuation Marks

Pictorial Symbols 
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General Considerations 
A complete and well-defined set of user needs and 
tasks is vastly important in the design of visualiza-
tions that are to make a true difference. The follow-
ing discussion highlights the value of user needs in 
guiding analysis and visualization design. While 
exploring visualization production versus consump-
tion, convention versus customization, and incre-
mental prototyping and replication issues, the discus-
sion also argues for the anticipation of change.

User Needs as Guides 
There exist many data mining and visualization 
algorithms that can be used to render data into 
insights. Visualizations might be presented using 
static printouts or interactive displays. The problem-
solving space created by diverse combinations of 
datasets, algorithms, and deployment options is 
large and complex. A detailed understanding of 
user needs helps navigate this space to select the 
best datasets, workflows, and deployment.  

Datasets provided or demanded by users affect 
which data scale types are used (see the subsequent 
spread on data acquisition, and see also page 28). 
Reformulating user needs in terms of analysis types 
and levels (page 5) can help in identifying the most 
appropriate types of studies and selecting the best 
visualization types (page 30). Knowing which data 
variables are critical in which steps of the sense-
making and decision-making process can help in 
selecting the most effective graphic symbol types 
(page 32) and graphic variable types (page 34). 

Being informed about currently used (or poten-
tially acceptable) hardware and software can help 
in designing effective human–computer interfaces 
(page 70) and interaction (page 68) that will be 
useful in daily practice. 

Ultimately, each visualization design is an opti-
mization of usability (i.e., effectiveness, efficiency, 
satisfaction, and accessibility), actability (in that it 
permits, promotes, or facilitates the performance  
of actions), productivity, enjoyability (also called 
pleasurability), and, last but not least, affordability.

Production Versus Consumption
Frequently, the visualization producer is different 
from the visualization user or consumer. Although 
the producer may have extensive knowledge on  
algorithms and tools, the consumer may be a domain 
expert with little or no expertise in visualization 
design. However, both types of expertise are needed 
to create the best visualization (i.e., to create effec-
tive workflows, adjust algorithm parameter values, 
improve mapping of data variables to visual vari-
ables, and select alternative data views). As the com-
plexity of data, mining, and visualization designs 
increases, so too does the size of the teams that  
collectively produce and consume visualizations. 

Convention Versus Customization 
Conventional visualization designs generally 
become faster to make, cheaper, more reliable, and 
easier to use the more tested and widely used they 
are. Custom design solutions may prove necessary 

when new demands must be met, as long as the 
budget and allotted time support the development, 
evaluation, and user training required for them. 
Typically, standard solutions address general needs, 
whereas custom solutions address unique needs. 

This is also true for visualization tools. 
Standard tools support the design of standard 
visualizations. Custom code is needed to render 
novel visualizations. Plug-and-play architec-
tures (see page 168, Plug-and-Play Macroscopes) 
support the rapid development and dissemination 
of innovative custom code while making it easy 
to log, share, and rerun existing data analysis and 
visualization workflows. The best algorithmic and 
workflow solutions are born from solving specific, 
practical problems. Widespread adoption and 
refinement of solutions then leads to the creation 
of de facto standards.

Iterative Prototyping and Replication
Most real-world applications require reliable and 
replicable workflows and effective, easy-to-use visu-
alization design solutions. However, new data sets, 
algorithms, and tools are becoming available on a 
regular basis (see page 168, Changes in the S&T 
Landscape); novel workflows are invented every 
day; and very few standards exist. 

To satisfy real-world demands, visualization 
designers and tool developers need to embrace the 
steadily increasing stream of data, algorithms, and 
tools; furthermore, they need to identify and stan-
dardize those algorithms and workflows that lead 
to superior results. Participatory, iterative prototyp-
ing is key (see figure below) and is accomplished 
through initial sketches (e.g., pencil drafts); early 
renderings of raw data, using existing tools, to see 
the data’s coverage, patterns, and trends for the 
first time; the development of novel algorithms and 
workflows to optimize data analysis and visualiza-
tion design; the comparison and validation of results 
(see page 72, Validation and Interpretation); and 
the detailed documentation and broad dissemination 
of validated visualizations, tools, and workflows. 
Integrative solutions that solve a problem holisti-
cally, with few or no trade-offs, are best.

Users and Needs
Deep knowledge about a user group and its decision-
making process, the chosen subject matter, and the 
function a visualization is meant to serve must all 
be clear before the design process can begin. The 
ultimate goal is the detailed identification of user 
types, demographics, task types, conceptualization, 
work contexts, and priorities. 

User Needs Acquisition   
Any good data analysis and visualization is driven by a deep care about the target 
user’s needs. Users may wish to advance a theory (e.g., by testing a scientific hypothe-
sis) or improve their daily decision making (e.g., by discovering which type of funding 
best supports an activity of their choice). In all cases, it is important to identify what 
keeps users up at night—for instance, determining the elements that may advance or 
thwart their careers, to ensure the final visualizations support the former while avoid-
ing the latter. This spread details the first step in the Needs-Driven Workflow 
Design, page 24). Starting with a listing of general considerations, it reviews key 
user types and tasks, discusses the user needs acquisition process, and concludes 
with general advice on how to interlink user needs to the visualization framework 
discussed on pages 24–39. The end goal is to design insightful visualizations that 
truly match user needs and tasks and that would rank highly when validated using 
the criteria and methods discussed in Validation and Interpretation (page 72). 

It is not the consumer’s job to know what they want.
Steve Jobs
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User Types
In establishing user types, one may ask: Is the visu-
alization serving novices or experts, casual or power 
users? Will it be used by one individual (via a handheld 
device), a small group (using a larger display wall), or a 
large audience (in a theater-style setup)—face-to-face 
or online? Should the visualization therefore be under-
standable to a single individual, a small group, a larger 
organization, or an entire network of users?

Demographics
In researching demographics for any single user, 
one needs to acquire information on profession, 
location, gender, or age and to describe the user’s 
range of abilities, accounting for vision, hearing, 
mobility, or cognitive impairments. One should 
also consider the user’s level of technical and sub-
ject-matter expertise. Some user groups are text 
focused (lawyers) while others read three-dimen-
sional structures easily (chemists). Finally, one must 
choose the visual language the user best understands 
for its function and/or content. 

Task Types and Task Levels
In determining insight needs, one may ask: How 
do users currently do their work? What are their 
goals? What set of tasks supports these goals? One 
would then draw a diagram of the workflow and 
describe it in the words that users would use. Finally, 
one should prioritize tasks based on criteria such as 
the importance of the goal to the organization and the 
frequency of task performance. See also Task Types 
(i.e., statistical to network analysis; page 5) and Task 
Levels (i.e., micro to macro; page 5) for guidance on 
the selection of data analysis and visualization types.

Conceptualization
When exploring conceptualization, one should ask: 
How do users conceptualize their work? What lan-
guage do they use to describe what they do or what 
they wish to be able to do? What data do they use (see 
page 28, Data Scale Types), and which aspects of 
that data are most important to their decision making?  
What types of questions (see page 26, Insight 
Need Types) do they need to answer, at what level of 
abstraction, and with what accuracy? How do they 
define or evaluate the success of a visualization?

Work Environment
In researching work environment, one should aim 
to describe scenarios or circumstances in which 
the visualizations may be used. One should note 
environmental challenges, such as poor lighting or 
noise, as well as any technical challenges, including 
screen size or Internet bandwidth. One should also 
determine what hardware and (browser) software, 

monitors, and screen resolutions one’s audience uses 
(see page 70, Human-Computer Interface). Do the 
users work mostly online or offline? Does their pro-
cess result in printouts, or is it paperless and inter-
active? Is it static or dynamically evolving? What do 
they love or hate about the tools they use currently? 
Do they face any security restrictions? 

Prioritization
Finally, one should aim to acquire information 
about priorities: Which pieces of information do 
users want first, second, and third? What informa-
tion is indispensable in order to avoid disaster? How 
do users judge the result of their work or actions? 
What causes them to advance in their profession, 
or to get fired? The results of this type of analysis 
will guide the mapping of data variables to visual 
variables—high-priority features should be visually 
encoded using the most dominant visual represen-
tations (see page 32, Graphic Symbol Types, and 
page 34, Graphic Variable Types).

Needs Acquisition
Most users can easily propose quantitative changes 
to an existing practice, such as the need for faster 
response times, improved ease of use, and increased 
accuracy; yet few can envision qualitative new ways 
to navigate, manage, or make sense of data. They can, 
though, judge the potential value of novel visualiza-
tions—particularly if those visualizations show their 
own data in a new way. Access to detailed user and 
usage data, as well as to key stakeholders and leading 
experts (e.g., via participatory design), is necessary 
to characterize users and their tasks. This section 
reviews common methods, which may be applied 
independently or in combination. The methods differ 
in terms of cost, target population coverage, flexibility 
with regard to asking questions, respondents’ willing-
ness to participate, and response accuracy.

Interviews 
In interviews, two or more 
people engage in a conversation, 
whereby a set of questions  
is asked by the interviewer 

to elicit answers from the participant(s). The 
researcher should listen carefully and patiently  
with an open mind—and also learn the necessary 
language, conceptualization, and metaphors—in 
order to design visualization and interfaces that 
match the users’ needs and worldviews. 

Observations
Using this method, 
experts observe target 
users in real-life situa-

tions to find out what they truly like or dislike, what 
they want or reject; what inspires them, and what 
confuses them; and what their ideal visualization 
(tool) might look like. Observations of how current 
products and services are used together with infor-
mation on use context are particularly valuable.

Surveys
Surveys are a highly effective 
means of collecting quantitative 
information about products (such 
as visualizations) in a population. 

They can be conducted online or offline; using mail, 
email, phone, or online services; in face-to-face 
meetings; or through the use of questionnaires or 
focus groups (see below). Single-choice or multiple-
choice questions might be asked. Likert scales (see 
page 29, Ordinal Scale) are widely used to scale 
responses. Open-ended, freeform questions may be 
acceptable, but results are harder to analyze.

Focus Groups
A small group of users is 
invited to join an interac-
tive group setting and 
asked about their percep-

tions, opinions, beliefs, and attitudes toward a visu-
alization product, service, concept, advertisement, or 
idea. Users are encouraged to talk with each other so 
that important patterns of interaction are revealed. 
For example, users might interpret a visualization 
differently; it is therefore important to be aware of 
each user’s level of expertise and visualization lit-
eracy, and how the group’s collective expertise can 
be best harnessed toward improving collaborative 
decision making by means of data visualizations. 

Apprentice 
Model
Data mining and 
visualization experts 
are invited by users to 

serve as apprentices. They become intimately famil-
iar with the work environment, key tasks and pri-
orities, and what truly matters in users’ daily deci-
sion making. The resulting knowledge is invaluable 
not only for the design of influential visualizations, 
but also for the introduction of qualitatively new 
conceptualizations and work practices into existing 
work environments.

Lead User 
Analysis
Users that face new 
needs months or years 
before the majority of 

a particular market segment encounters them are 
called lead users. Lead users benefit significantly 
by developing or otherwise obtaining a solution 
to those needs, making those users early adopters 
of new solutions (see Rogers’s five types of adopt-
ers in Atlas of Science, pages 58–59). The methodol-
ogy involves the identification of trends and general 
needs; seeking out lead people or organizations that 
are working on solutions to extreme versions of the 
general needs; and the identification and validation 
of potentially disruptive solutions. 

Conjoint 
Analysis 
This statistical tech-
nique can be used to 
understand the value 

of a limited number of product or service attributes. 
Ultimately, it aims to identify what combination 
of attributes is most influential on users’ decision 
making. Via this methodology, users are asked to 
evaluate (e.g., select for purchase) a controlled set 
of potential products or services. (For example, a 
visualization may be static or interactive; black and 
white or colored; and shown on a different output 
device. Each variable has multiple attribute values. 
An output device may be a printout, a computer 
screen, or a handheld device.) An analysis of user 
preferences reveals the implicit evaluation of the 
individual attributes that make up a product  
or service. 

User Mining 
and Modeling
As data on user 
demographics 

and behaviors (e.g., user profiles, purchasing data, 
website log data, or social network data) becomes 
available in digital form, data mining and visual-
ization techniques can be applied to compute user 
preferences or reactions to new product offerings. 
The book and movie recommendation systems  
of Amazon and Netflix reflect but one way that  
customer behavior can be predicted and used to  
customize the visual display of information in order 
to increase sales. Other companies, such as Google 
and Facebook, mine massive amounts of news, 
social media, and other data to determine the reac-
tion of customers to new product offerings. In S&T 
studies, diverse algorithms and approaches have 
been developed to understand if download counts, 
early citations, and other attributes can be used to 
predict the final citation count of a publication.
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Data Variables
Naming conventions on page 26 defined a data 
record as a N-tuple of data variables. The data vari-
ables may be qualitative or quantitative and have 
different data scale types (page 28). Data variables 
might exist in the original data or may be derived 
or computed from it. They may be dependent and 
independent as discussed below.

Original versus Derived Variables
Some data variables exist in the original data set 
(e.g., journal name and author address in publica-
tion data). Other data variables are derived (e.g., the 
author’s address might be used to determine latitude 
and longitude data value pairs required to place a 
data record on a geospatial map). It is important to 
keep track of where each piece of data came from 
(also called data provenance) to ensure high data 
quality and to facilitate informed validation and 
interpretation (page 72).  

Dependent versus Independent Variables
The variables used in an analysis or study can be 
divided into dependent variables, independent vari-
ables, and other variables. Dependent variables are 
expected to change whenever the independent variable 
is altered. Other variables such as covariates used to 
reduce the amount of variability might be recorded 
as well. There may be more than one variable of 
these three types. For example, the number of cita-
tions a paper acquires (here treated as a dependent 
variable) may depend on the number of authors, 
their reputations, and their geolocations (here 
treated as independent variables). During visualiza-
tion, independent variables are commonly plotted on 
the horizontal x-axis; dependent variables are plot-
ted on the vertical y-axis.

Data Format
Selecting or defining an appropriate data format is 
critical when acquiring and processing data. The 
selection of relevant data variables, together with 
their data scale types (page 28) and data formats, 
influences which analyses can be run and visualiza-
tions created. For example, when a paper becomes 
available, online or in print, the publication date 
can be recorded as either the full date or only the 
year. Different date formats may be used, and the 
chosen format must be documented (e.g., some U.S. 
foundations make their data sets available in the 
European date format: day, month, year). Values 
may be stated in different units (e.g., a salary may be 
stated in either U.S. or Canadian dollars). Author 
affiliations can be stated with or without explicit 
links to each author; the latter makes it impossible 
to geolocate all authors on a map, as correlations 
cannot be made between the authors’ names and  
the addresses listed. 

Data Aggregation
Aggregation of data (also called generalization or 
clustering) can be applied to optimize both data 
density and legibility (see also page 52, Visual 
Generalization). For example, temporal data 
can be aggregated by seconds, minutes, hours, 
days, weeks, months, years, decades, and so on. 
Geospatial data can be grouped by congressional  
district, ZIP code, county, state, country, or  
continent. Linguistic data, such as text characters, 
can be grouped into words, sentences, paragraphs, 
sections, chapters, books, and collections. Network 
data may feature individual nodes, subnetworks, or 
the entire network.

Matching Data Analysis Types
Data records have different data variables (e.g., 
publication title, year, and authors) that are each 
uniquely useful in different types of analysis (see 
page 4, Systems Science Approach). This is illus-
trated on the opposite page that displays a mélange 
of elements: commonly used data variables from the 
Web of Science publication database (top-right); a 
table with publication data in the Web of Science 
format, sorted by publication year (below); one 
paper in the table is highlighted in white and its 
cover page with all author names and journal title 
is shown (top-left); and different data views from 
the tabulated publications are displayed (at bottom). 
Data variables are grouped and color-coded by the 
types of questions they help to address.

Statistical Studies
When taking on a new data set, it is important to com-
pute baseline statistics. That can be done by count-
ing and plotting the annual numbers of records, 
unique authors, or citations; or by calculating distribu-
tions and correlations to ensure the data set has the 
desired coverage and quality (see page 44, Statistical 
Studies). As for the example on the opposite page, a 
table with unique journal titles and counts for num-
ber of papers or total Times Cited counts or a scatter 
plot (see page 47) of Times Cited counts and Cited 
Reference Counts might be computed.

Temporal Studies
If the user needs acquisition (page 40) identified  
the necessity for temporal analysis, or answering 
a when question, then the data must have one or 
more variables that represent time (see page 48, 
Temporal Studies—“When”). Time resolution 
is important. If a monthly resolution is necessary 
but only publication years are available for journal 
papers, then volume information can be used; it 
must be noted, however, that different journals pub-
lish different numbers of volumes per year. Bursts 
of activity can be identified (page 48) and plotted 
using horizontal bar graphs that show the beginning  
and end of a burst (i.e., the width of a bar represents 
the burst duration) and represent burst strengths by 
the height of the bar (see example on opposite page).

Geospatial Studies
If a geospatial question needs to be answered, there 
must be a way to geolocate records (see page 52, 
Geospatial Studies—“Where”). Address data can be 
used to identify latitude and longitude values; U.S. ZIP 
codes uniquely identify a geolocation. Again, resolu-
tion is important (e.g., if a U.S. congressional district  
needs to be identified, then a five-digit ZIP code will 
not suffice; the full nine-digit ZIP code is required 

to uniquely associate each ZIP code to exactly one 
district). The opposite page shows a world map with an 
overlay of proportionally area-sized circles that repre-
sent the number of lead authors per unique geolocation. 

Topical Studies
If a topical or semantic question needs to be 
answered, there must be a way to determine the  
topical content of records. Text occurring in the title, 
abstract, keywords, full text, or subject category may 
be analyzed using linguistic techniques (see page 56, 
Topical Studies—“What”). Records can be clustered  
and labeled according to semantic similarity. Shown 
on the opposite page is an overlay of the tabulated  
publications on the UCSD Map of Science and 
Classification System (TTURC NIH Funding Trends, 
page 65 and Atlas of Science, page 13).

Network Studies 
If a network question needs to be answered, networks  
need to be extracted and analyzed (see page 60, 
Network Studies—“With Whom”). Relationships 
may exist between nodes of the same type (e.g., in  
unimodal coauthor networks or paper-citation net-
works; see example on opposite page) or may be of 
different types (e.g., in bimodal author–paper net-
works; see page 63, Bimodal Graph). 

Matching Graphic  
Variable Types  
When acquiring and formatting data, it is impor-
tant to ensure that it corresponds to data scale types 
(page 28) that can be effectively mapped to graphic 
variable types (page 34).

Choosing the right type and number of data 
records and/or the appropriate level of aggrega-
tion is important. Showing too few records/classes 
will result in an information-poor visualization. 
Plotting too many may lead to visual clutter (e.g., 
graphic symbol occlusions, such as in “network 
hairballs”), making it difficult if not impossible to 
identify general trends and patterns. In addition, 
large numbers of classes may compromise legibility, 
as more classes require more graphic variables (e.g., 
colors) that become increasingly difficult to tell apart. 

Ideally, there is a one-to-one mapping between the 
number of different data values (e.g., the number of 
classes) and the number of graphic variable values (e.g., 
color hues). However, in some circumstances, there 
may be a many-to-one mapping; that is, the number of 
qualitative data types may be larger than the number 
of distinct graphic variable values. For example, the 
map of the Language Communities of Twitter (see 
Atlas of Forecasts) shows language use in Twitter across 
Europe using more than 30 different colors that are 
optimized for maximum distinguishability. 

Data Acquisition    
A tremendous increase in the number of papers, books, patents, experts, and 
funding has been seen over time, as shown in the Atlas of Science (see graphs on 
pages 4–5). Social media data sets such as blogs, tweets, and emails are becoming 
increasingly important for understanding S&T structures and dynamics (see page 
170, Data Monitoring and Analytics). The Atlas of Science (page 60) explored data 
types, sizes, and formats; data quality and coverage; and data acquisition, prepro-
cessing, augmentation, integration, and preservation. This spread discusses different 
variable types, formats, and aggregations, as well as the process of matching data 
variables to data analysis types (page 5) and to graphic variable types (page 34).  

It is no longer enough to measure what we can—we need to measure what matters.
Robert Wells and Judith A. Whitworth
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Times Cited Publication Year Research Addresses Journal Title (Full) Title Authors

6 2013 [Mazloumian, Amin; Helbing... SCIENTIFIC REPORTS Global Multi-Level Analysis of the ‘Scientific... Mazloumian, A|Helbing... 

7 2012 [Borner, Katy; Milojevic... MODELS OF SCIENCE DYNAMICS... An Introduction to Modeling Science: Basic... Borner, K|Boyack... 

5 2012 [Borner, Katy; Zoss, Angela... PLOS ONE Design and Update of a Classification... Borner, K|Klavans... 

51 2011 [Wagner, Caroline S... JOURNAL OF INFORMETRICS Approaches to understanding and... Wagner, CS|Roessner... 

15 2011 [Boyack, Kevin W.] SciTech... PLOS ONE Clustering More than Two Million Biomedical... Boyack, KW|Newman...

13 2011 [Borner, Katy] Indiana... COMMUNICATIONS OF THE... Plug-and-Play Macroscopes Borner, K

5 2011 [Guo, Hanning] Dalian Univ... SCIENTOMETRICS Mixed-indicators model for identifying... Guo, HN|Weingart...

20 2010 [Falk-Krzesinski, Holly J.... CTS-CLINICAL AND... Advancing the Science of Team Science... Falk-Krzesinski... 

16 2010 [Borner, Katy] Indiana Univ... SCIENCE TRANSLATIONAL... A Multi-Level Systems Perspective for the... Borner, K|Contractor...

9 2010 [Borner, Katy; Huang... SCIENTOMETRICS Rete-netzwerk-red: analyzing and... Borner, K|Huang... 

17 2009 [Boyack, Kevin W.] Sandia... SCIENTOMETRICS Mapping the structure and evolution of... Boyack, KW|Borner... 

14 2009 [Borner, Katy] Indiana Univ... JOURNAL OF INFORMETRICS Visual conceptualizations and ... Borner, K|Scharnhorst...

6 2009 Indiana Univ, Sch Lib & ... SCIENTOMETRICS The Scholarly Database and its ... LaRowe, G|Ambre...

69 2008 [Mons, Barend; van s... GENOME BIOLOGY Calling on a million minds for community... Mons, B|Ashburner...

55 2007 Indiana Univ, Sch Lib & ... ANNUAL REVIEW OF... Network science Borner, K|Sanyal...

26 2007 Indiana Univ, Sch Lib & ... COMPLEXITY Analyzing and visualizing the semantic... Holloway, T|Bozicevic...

81 2006 Arizona State Univ, Sch... GLOBAL ENVIRONMENTAL... Scholarly networks on resilience, vulner... Janssen, MA|Schoon...

19 2006 Indiana Univ, Sch Lib & ... SCIENTOMETRICS Mapping the diffusion of scholarly knowle... Borner, K|Penumarthy...

214 2005 Sandia Natl Labs... SCIENTOMETRICS Mapping the backbone of science Boyack, KW|Klavans...

50 2005 Indiana Univ, SLIS... COMPLEXITY Studying the emerging global brain... Borner, K|Dall’Asta... 

9 2005 Indiana Univ, Dept... ANIMAL BEHAVIOUR Trends in animal behaviour research (1968... Ord, TJ|Martins... 

88 2004 Indiana Univ, Sch Lib & ... PROCEEDINGS OF THE NATIONAL The simultaneous evolution of author and... Borner, K|Maru...

74 2004 Indiana Univ, Dept Psychol... PROCEEDINGS OF THE NATIONAL Mapping knowledge domains Shiffrin, RM|Borner...

35 2004 Indiana Univ, Sch Lib & ... PROCEEDINGS OF THE NATIONAL Mapping topics and topic bursts in PNAS... Mane, KK|Borner...

224 2003 Indiana Univ, Bloomington... ANNUAL REVIEW OF... Visualizing knowledge domains... Borner, K|Chen...

41 2003 Sandia Natl Labs... JOURNAL OF THE AMERICAN... Indicator-assisted evaluation and funding... Boyack, KW|Borner...

7 2002 Indiana Univ, Sch Lib &... VISUAL INTERFACES TO DIGITAL ... Visual interfaces to digital libraries: Borner, K|Chen...

16 1996 HTWK Leipzig, FB ADVANCES IN CASE-BASED... Structural similarity and adaptation Borner, K|Pippig... 
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Exploratory Versus Confirmatory
John W. Tukey made the important distinction 
between exploratory data analysis and confirmatory 
data analysis, believing that much statistical meth-
odology placed too great an emphasis on the latter. 
Whereas confirmatory analysis aims to summarize 
data sets by computing their main characteristics, 
exploratory analysis uses statistical modeling and 
inference to predict data characteristics (see Atlas 
of Forecasts). The figure below shows the set of all 
data (called Population) and a limited subset (called 
Sample) of the data sampled from the population. 
Statistics can be used to determine which sample size 
is needed to answer a given question using Probability 
theory, to generate Descriptive Statistics for a 
Sample, and to use it to run Inferential Statistics to 
make generalizations from a Sample to a Population. 
The discussion ahead features key measures and 
approaches that are commonly used to describe, orga-
nize, and summarize the main characteristics of data.

Central Tendency Measures 
These measures calculate the “center” around which 
data is distributed. The mean equals the arithmetic 
average, calculated by adding up all the values in a 
data set and then dividing that sum by the number 
of values in the data set. It is best for symmetric 

distributions without outliers but is less meaningful 
for scale-free distributions such as those character-
izing the number of citations per paper or number 
of collaborators per author. The median, or mid-
value, equals the middle value in an odd number 
of values and the average of the middle two points 
for an even number of values: That is, half of the 
data values are above the median, whereas the other 
half are below. It is commonly applied for skewed 
distributions or data with outliers. The mode is the 
most frequent value in a series. For example, in the 
sequence of values {1, 1, 2, 3, 5, 6}, the mean is 3, 
the median 2.5, and the mode is 1.

Data Distributions
Many real-valued random variables (e.g., highway 
distances between cities, page 60) cluster around 
a single mean value, and their distribution can be 
approximated by a bell-shaped continuous probabil-
ity density function (also called normal or Gaussian 
distribution). Its cumulative distribution function 
is S-shaped (see adoption of innovations graph on 
page 58 in Atlas of Science).

The distribution of a set of data is important as  
it affects data-sampling decisions and measurement 
of result confidence. Variation measures describe 
the “data spread” around the mean or expectation μ 
of a distribution. The standard deviation σ measures 
the amount of variation from μ. In the Gaussian 
normal distribution graph, roughly 68 percent of 
the observations (in the population) lie within one 
standard deviation of μ; about 95 percent lie within 
two σ; and 99.7 percent lie within three σ.

Many real-world scholarly data sets can be 
represented by a scale-free network whose degree 
distribution follows a power law (also called Pareto 
distribution), at least asymptotically. Examples are 
the number of citations per paper or scholar, the 
number of collaborators per scholar, and income 

earned or profits made (see page 46, Statistical 
Visualization Types, for plot; and page 60, 
Network Studies—“With Whom,” for details 
and additional examples, particularly the degree 
distribution of street versus airplane networks). The 
number of citations that papers attract over time 
(typically, many initially and then fewer over time) 
can best be approximated by a Weibull distribution. 

Data sets that have similar statistical properties 
can look rather different when graphed. For example, 
Francis J. Anscombe created four data sets, each  
with 11 x-y value pairs, that have almost identical 
statistical properties: The mean of the x values is 9.0, 
the mean of the y values is 7.5, and there are nearly 
identical variances, correlations, and regression lines. 
However, when plotted they show a simple linear 
relationship (top-left in below figure), a curvilinear 
relationship (top-right), a linear relationship with one 
outlier (bottom-left), and a non-linear relationship 
with one outlier (bottom-right).

Curve Fitting
In any given data series, curve fitting (also called 
smoothing or regression) is a process that determines 
and superimposes a curve or surface that most 
closely approximates the data. The resulting analytic 
description of the data can be used to identify trends 
in the data; determine the types of relationship or cor-
relation between variables (e.g., linear versus exponen-
tial); calculate the degree of variation of data points 
from a theoretical or expected curve; determine if data 
points vary randomly, uniformly, or otherwise from a 
theoretical or expected curve; or project future values.

Multiple types of curves can be used to fit the 
same data; then the type that most closely approxi-
mates the data and/or best fits the process that 
generated the data should be selected. Selecting the 
proper curve is particularly important when making 
projections; compare linear versus polynomial fit in 
the graphs in Regressions, page 73. Although the 
linear f it suggests continuous growth, the poly-
nomial fit indicates a potential downturn in sales.

A confidence interval (also called a confidence 
band) describes the region in which the fitted curve 
would lie given a specific degree of confidence (e.g., 

90 or 95 percent) if the entire family of data (i.e., 
the population) could be observed (see below). 

Residuals (also called fitting errors) are the 
distances between observed data points and the 
fitted curve. They are commonly plotted for the 
dependent variable and may be either positive or 
negative (see example below).

Statistical error (also called disturbance) is the 
amount by which an observation from a randomly 
chosen sample differs from its expected value (i.e., 
the whole population). An example is the difference 
between the age of each man in a sample and in the 
unobservable population mean. 

Correlations
A correlation is a mutual relationship or connec-
tion between two or more things (see also page 47, 
Statistical Visualization Types). A scatter plot with 
a “shotgun blast” pattern, or an alignment of points 
that is close to either the horizontal or vertical axis, 
indicates very low correlation (see below-left). If 
data points fall along a straight line, then a high 
degree of correlation exists—with a positive corre-
lation if the high and low values of the two variables 
tend to coincide (below-middle) and a negative cor-
relation if low values of one variable coincide with 
high values of the other variable (below-right). See 
subsequent spread for additional examples.

Statistical Studies
The field of statistics focuses on appropriate ways to collect, codify, analyze, and 
interpret numerical information. Standard analyses comprise data summaries,  
differences, averages, ratios, and distributions. This spread reviews common 
statistical analyses and presents exemplary visualizations on the opposite page. 
Special focus is given to insight need types (page 26), such as comparisons,  
correlations, distributions, and trends, together with sample analyses and  
visualizations that are particularly relevant for the study of S&T. 

We all know that Americans love their statistics—in sport, obviously. And in finance too.
Evan Davis
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Wheat Prices Versus Wages
William Playfair (1759–1823), a Scottish engineer and political economist, was among the first who thought to use 
data not only to inform, but also to persuade, and even to campaign for causes. He developed line graphs to show 
changes in economic indicators (e.g., national debt, imports, exports) over time and across countries; comparative  
bar charts to show relations of discrete series; and pie charts and circle diagrams to show part–whole relations. 
This graph shows the weekly wages of a good mechanic as a red line, the price of a quarter of wheat as black-shaded 
bars, and the reigns of monarchs (displayed along the top) for the years 1565 to 1821. Major changes in wheat 
prices, the affordability of wheat, and the slowing increase in buying power are all clearly demonstrated here.

Prison 
Expenditures 
for Brooklyn, 
New York City
The Spatial Information 
Design Lab at Columbia 
University studies the 
geography of incarcera-
tion. It aims to shift 
attention from punish-
ment and rehabilita-
tion to the conditions of 
neglected urban spaces. 
Investments into urban 
spaces from which pris-
oners often come and to 
which most return seem 
preferable to high prison 
expenditures (indicated 
by bright red in this map).

All of Inflation’s Little Parts
This circular treemap from the Bureau of Labor Statistics, as published in The New York Times, shows the 200 
product categories that are used to calculate the Consumer Price Index. The area size of each product category 
corresponds to an estimate of what the average American spends. Area color indicates price changes between 
March 2007 and March 2008. 

Magnet States Versus  
Sticky States
An American mobility study conducted by  
the Pew Research Center aims to answer 
which states are losing and gaining population 
and who moves from what state to what other 
state. Shown here are the top “magnet” states 
(left), which attract residents from other states, 
and the top “sticky” states (right), in which a 
high percentage of the native population still 
resides in the state. When an online user  
hovers his mouse cursor over a state for one 
list, its ranking in the other list also appears. 
See page 178, References & Credits for link 
to interactive visualization.

Part 2: Envisioning Science and Technology      45



Glyphs
Different pictorial symbols have been developed to 
display key statistical features in a compact man-
ner. Among them are error bars, box-and-whisker 
symbols, and sparklines, each of which is discussed 
ahead. For a discussion of Chernoff faces and other 
glyphs, see Graphic Symbol Types (page 32).

Error Bar 
The error or uncertainty in a reported measurement 
can be depicted using error bars that may represent 
one standard deviation of uncertainty or a certain 
confidence interval (e.g., a 95 percent interval). The 
exact error measure used needs to be stated explic-
itly in the graph or legend. Error bars can be used 
with different graphic symbol types (see point and 
bar graph symbols in the figure below). They can 
help to determine whether differences are statisti-
cally significant, or they can suggest the goodness 
of fit of a given function. 

Box-and-Whisker Symbol
This symbol (also called a percentile plot, box 
diagram, box plot, or box-and-whisker plot) was 
introduced by John W. Tukey. It represents the key 
values, symmetry, and skewness of a data set using 
a rectangular box symbol with lines (whiskers) 
extending from both ends (see next column, top). 
The box is centered on the median data value (50th 
percentile). Both the median and mean may be 
denoted by a line. The box’s ends designate the 25th 
and 75th percentiles of the data set (i.e., the range 

of quantitative values in which 50 percent of all  
data records fall). Whiskers typically start at the 
fifth or tenth percentiles and end at the 90th or 
95th percentiles. Outliers (data points beyond the 
whisker ends) are denoted by dots.

Box symbols can be run vertically or hori-
zontally. Data from multiple data distributions 
can be grouped. To ease comparison, they can be 
connected by a line that passes through the median 
or mean value. As an example, the graph below 
shows a box-and-whisker symbol for each publica-
tion year to indicate the number of coauthors for 
one scholar over 13 years. The bold horizontal line 
denotes the median; the blue line interconnects the 
means for each year; dots denote outliers. 

Sparkline
Introduced by Edward Tufte, sparklines are numer-
ically dense, word-sized glyphs that show data vari-
ation over time. They have a starting point and an 

endpoint; show data variation in between; typically 
highlight the minimum and maximum values; may 
show missing data; and may emphasize the area 
under the curve (see different types below).

This  shows the fluctuations of the 
Dow Jones industrial average over the course of 
February and March 2012, with the dramatic dip 
(red dot) indicating the March 16 panic surrounding  
the Fukushima Daiichi nuclear disaster in Japan.

Graphs
Among other uses, graphs can support comparisons 
and depict correlations, distributions, and trends. 
Exemplary visualizations that address these four 
insight need types (page 26) are discussed ahead 
(see additional examples in the previous spread).

Comparisons
The grouping or close proximity of data visual-
izations (e.g., the side-by-side or back-to-back 
placement of graphs, which is common in popula-
tion pyramids; see page 27, Comparison) makes 
it easier to compare data sets. Consistent axes 
should be used to support such comparisons (see 
the Misleading and Improved examples below). 
However, broken bars and axes should be used 
sparingly to avoid misinterpretation (see page 73, 
Distortions). Broken bars like those below should 
only be used if the outlier is not a key part of the 
visualization and is at least three times or more the 
size of the next largest value.

Line Graph
A line graph plots quantitative data as a series of 
points that are connected by lines; see Validation 
and Interpretation (page 73) for examples.

Bar Graph
A bar graph (also called a column graph) displays 
quantitative data by means of a series of vertical or 
horizontal rectangles or bars. The bars commonly 
start at zero and end at the value of the data record 
that is represented by the bar. Positive and negative  
values can be plotted; records can be sorted by value 
(see graph below, which charts changes in rank-
ing for five organizational units). Bars can also be 
stacked (see page 50). Typically, each bar represents 
one category (e.g., an institution, product, or year) 
and all the bars combined represent the data set. Bar 
graphs differ from histograms (see opposite page) 
that can be used to plot quantitative data, in that 
bars can be reordered and there are typically spaces 
between bars. A 100 percent stacked bar and column 
graph is known as a mosaic graph (page 62).

Radar Graph
The radar graph (also called a polygon graph, polar-
area chart, radar plot, spider chart, or star chart) 
originated with André-Michel Guerry (1829) and 
Florence Nightingale (1858). It displays multivari-
ate quantitative variables of different data records 
on axes starting from the same midpoint. The  
relative position and angle of the axes is typically  
uninformative, but axes can be reordered to  
minimize edge crossings. An example is the graph 
below, which plots Allocated Budget (in blue)  
versus Actual Spending (in red) in millions of  
dollars for an imaginary company; with the excep-
tion of Administration and Customer Support, 
most of the spending is on target. 

Compare this type of graph with circular hive 
graphs (page 63) that use a radial coordinate system 
to display network data.

Statistical  
Visualization Types
This spread discusses data visualization types that were specifically developed to 
depict statistical results. Some concisely encode several dimensions of data into a 
simple glyph such as a pictorial symbol that can be perceived as a single perceptual  
unit. Others graph data to satisfy key insight need types, such as comparisons or 
the identification and communication of correlations or distributions. For good 
measure, books by John W. Tukey, William S. Cleveland, Robert Harris, or 
Stephen Few may be consulted for detailed explanations and additional examples.
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Parallel Coordinate Graph
Like the radar graph, the parallel coordinate  
graph plots variables of different data records  
on quantitative or qualitative axes. In contrast, 
however, the axes are parallel to one another. The 
relative position of the axes is again uninformative,  
but axes can be reordered to minimize edge cross-
ings. All values per record are then plotted on the 
given axes and interconnected by lines, the same 
as in a radar graph. Shown on page 31 is a graph 
with four axes representing counts that may be 
used to judge a scholar’s productivity over one 
year. Each of the six polylines represents all the 
values for a given scholar; one is highlighted  
in red. 

Correlations
The correlation between two variables (e.g., age 
and weight) can be plotted on a graph using 
Cartesian coordinates (see examples on page 44, 
lower-right). 

Scatter Plot
The scatter plot (also known as an x-y plot, or a 
dot, point, or symbol graph) displays quantitative 
information of data records, each represented by a 
graphical symbol type (e.g., a point; see page 32). 
The x-axis is commonly used to plot the independent 
variable, whereas the y-axis features the dependent 
variable. Scatter plots are used for investigating 
correlations between data variables or multiple data 
sets (which may be color-coded red and gray as in 
the example below). 

Distributions 
Frequency distribution graphs display every single 
data record. They can be used therefore to identify 
minimum and maximum values; how many data 
records have a certain value; if there are any  
outliers or unusual records; which value occurs  
most frequently; whether data records are distributed  
evenly or clustered; if the data is skewed, and if so 
in what direction; or how many clusters there are 

and where. An example is the log-log graph below, 
which shows the distribution of the number of 
authors per paper—revealing that the majority of 
papers have but one author (top-left dot), whereas 
very few have a large number of authors (lower-
right dots). 

Dot graphs, stripe graphs, stem-and-leaf graphs, 
and histograms are discussed ahead. Note that 
although histograms bin data (i.e., they do not 
display every single data record), they are widely 
used to display data distributions. For alternative 
visualizations such as tally charts and dot array 
charts, among other examples and detailed explana-
tions, see Robert L. Harris’s Information Graphics:  
A Comprehensive Illustrated Reference.

Dot Graph
In a dot graph (also called a dot chart), each data 
record is represented by a dot (see below). Jittering 
(i.e., adding small random values to the position 
values of graphic symbols so that the symbols are 
placed close to their real values) may be applied to 
avoid overlapping dots. Dots can encode other data 
variables via graphic variable types (page 32), such 
as the number of citations per publication (see page 
58, Crossmap). Multiple dot graphs can be shown 
in one graph to compare the density of multiple 
data records or data sets. Data from multiple data 
distributions can be grouped.

Stripe Graph
Stripe graphs (also called stripe charts) represent 
each data record with a stripe (see next column, 
top). The width of each stripe is uniform and does 
not encode a data variable. Jittering can be applied 
to avoid overlapping stripes. Stripes can encode 
other data variables via graphic variable types  
(page 34) such as topic areas (represented by color 
hue) of publication by a scholar. Multiple stripes  
can be shown to compare the density of multiple 

data records/sets, and data from multiple data 
distributions can be grouped. Combining stripe 
graphs with a scatter plot results in what is  
known as a rug plot (see example in Scatter Plot 
section, left).

Stem and Leaf Graph
A stem-and-leaf graph (also called a stem-and-leaf 
chart or plot) shows the leading digit(s), or stem(s), 
of each data variable to the left of a vertical line. 
The other digits, or leaves, are plotted side-by-side 
to the right of the line, forming a sort of histogram.  
The stem-and-leaf graph for the numbers 22, 24, 
25, and 29 is shown below. Here, 2 is the stem  
or leading digit, whereas 2, 4, 5, and 9 are the 
leaves or trailing digits placed to the right of the 
vertical line.

Stem-and-leaf graphs help to identify the spread 
of data; the mode, skew, and gaps; and also the 
outliers, or unusual data points. Leaves may be 
ordered by value to improve legibility and to help 
identify common values. 

Shown below is an ordered stem-and-leaf 
graph of a larger data set ranging from 12 to 101. 
Twenty-five values are equal to or below 57, the 
so called midpoint. The other six values are larger. 
There are no values (i.e., there is a gap) between  
45 and 70 and between 86 and 101; 101 is an 
unusual data point; and the data is skewed toward 
lower numbers. 

Multiple graphs can be displayed side-by-side or 
back-to-back (analogous to population pyramids, 
see page 27, Comparison) to support comparison.

Histogram
Histograms are used to show distributions of binned 
quantitative data variables. That is, they display 
bin-aggregated data rather than every single data 
record. Histograms can be plotted incrementally  
or cumulatively, as shown in the graphs below  
(top and bottom, respectively)—both of which  
feature the same distribution of class scores that 
were tabulated on page 30, Tables. A histogram 
differs from a Bar Graph (opposite page) in that 
there are no spaces between the bars, because there 
are no gaps between the bins. In addition, histogram 
bars cannot be reordered.

Histograms are widely used to visualize the 
distribution (shape, center, range, variation) of 
quantitative data variables. The bin size is important 
and exemplified in the histograms below, which 
show class scores for values above 80 and sample 
sizes 1 (top) and 10 (bottom). 

Bilateral histograms (also called two-way histo-
grams or paired bar graphs) are used to compare 
two frequency distributions back-to-back. They are 
called age pyramids or population pyramids when 
the binning is based on age. Typically, age intervals 
are plotted vertically, whereas the number of males 
or females per age interval is given horizontally (see 
figure and discussion on page 27, Comparison).

Bilateral histograms can be rendered as back-
to-back stem-and-leaf charts, thus providing  
additional details on the data distribution.
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Data Preprocessing
A time series is a sequence of events or observations  
that are ordered in one dimension: time. It can be 
continuous (i.e., there is an observation at every 
instant of time) or discrete (i.e., observations exist at 
regularly or irregularly spaced intervals). Time scales 
may be very short (i.e., events occur in a millisecond) 
or very long (i.e., events are recorded over years or 
centuries). Time-indexed information may be static 
(e.g., when analyzing historic data) or dynamically 
evolving (e.g., email or news data streams).

Resolution and Aggregation
Time may be given in milliseconds, seconds, minutes, 
hours, days, weeks, months, quarters, years, decades, 
or centuries.

Aggregation
Temporal data can be clustered or aggregated by 
astronomical time (e.g., seconds, days, years) or 
cultural time (e.g., semesters or fiscal years). The 
higher the aggregation, the lower the resolution.

Time Zones
When dealing with global data, time zones need to 
be considered. Typically, time zones for individual 
countries match their international or state borders 
(see next column, top). The International Date Line 
roughly follows the 180° line of longitude, but zigzags 
around the borders of various countries. China, which 
crosses five time zones, has chosen to use only one.

Outliers
It is important to identify and manage outliers (i.e., 
the minority of data points that are distant from 
most other data points). For example, if a web page 
gets “slashdotted” (when a popular website links to 
a smaller site), the massive increase in traffic is anal-

ogous to a denial-of-service attack. The resulting 
high number of download counts will affect all data 
statistics and may be better excluded from a general 
analysis and reported separately. Outliers may also  
be due to variability in the measurement, or they  
may indicate experimental error. Alternatively,  
outliers may be an indication that the “popula-
tion” has a heavy-tailed distribution, as is true for 
paper-citation or coauthorship data sets in which 
few papers/authors have a large number of citations/
coauthors, whereas most papers/authors have only  
a few (see page 47, Distributions).

Time Slicing 
When generating animations, the data set needs to 
be divided into different time slices. Time frames 
can be Disjoint, Overlapping, or Cumulative; see 
below. When disjoint, every time-stamped row 
in the original table is in exactly one time slice. 
Overlapping means that selected rows are in multi-

ple time slices. Cumulative signifies that every row 
in a time slice is in all later time slices.

Time frames can have either identical or different 
lengths (see 113 Years of Physical Review in Atlas of 
Science, page 159). In some cases, the length of the 
time frames may be defined in a data-driven way based 
on key events (see Wikipedia edits in the History 
Flow Visualization of the Wikipedia Entry “Abortion,” in 
Atlas of Science, page 125) or career decision points, 
such as changes in affiliation. As a result, times with 
little or no activity are compressed to make space for 
the visual depiction of active phases. 

Time frame duration is important. If it is too 
short, then too few data records are visible (in social 
network visualizations, many nodes may be uncon-
nected). If it is too long, then too many data records 
appear (social network visualizations may be too 
dense to be legible).

In some cases, it is beneficial to align time slices 
with the calendar. For example, if the slices are 
weekly and aligned with the calendar, then the day 
the week starts is used to determine how they are 
aligned. In the United States, Canada, and Mexico, 
the week starts on Sunday; in much of the Middle 
East it starts on Saturday; and in most European 
countries it starts on Monday.

Trends
As shown (next column, right), a given time series 
can be decomposed into a General Trend compo-
nent; a Cyclical component (e.g., day versus night, 
winter versus summer); a Seasonal component (e.g., 
summer vacation, holidays); and a Random compo-
nent. Trends correspond to low frequency variations  
in the data. In order to identify trends, data can be  
smoothed using a so-called low-pass filter which reads  
the original time series and generates a time series in 
which spectral components at high frequencies are 
reduced. A common filter method is a simple moving 
average (also called rolling average or running aver-
age) of length N, where N is an odd integer, that com-
putes a sample mean for each subset of N data values 
(see New York City’s Weather for 1980 on opposite 
page and page 50, Household Power Consumption).

To de-trend data, a so-called high-pass filter can 
be used that reduces low-frequency variations while 
high-frequency variations are unaffected. That is,  
if the fitted trend line tracks the lowest frequencies  
then all that remains after the high-pass filter is 
applied are the residuals from the trend line (see 
page 44, Curve Fitting).

Bursts
A burst is defined as any sudden increase in activity  
(e.g., in the usage frequency of a certain word in a  
text stream or in the number of citations to a paper). 

Jon Kleinberg’s burst detection algorithm is com-
monly used to detect bursts. Given a set of time-
stamped records, the algorithm identifies values (e.g., 
words) that occur with high intensity over a limited 
period of time. Rather than using plain frequencies,  
the algorithm employs a probabilistic automaton  
whose states correspond to the frequencies of 
individual words. State transitions correspond to 
points in time around which the frequency of the 
word changes significantly. For algorithm details, 
see original paper and textbook in References & 
Credits (page 178). The algorithm returns a ranked 
list of the most significant word bursts in the docu-
ment stream together with the intervals of time in 
which they occurred. This can serve as a means of 
identifying topics or concepts that rose to promi-
nence over the course of the stream, were discussed 
actively for a period of time, and then faded away. 

Burst analysis does not require preprocessing 
of data; misspellings are too infrequent to cause 
bursts. Stopwords such as “the” typically have a 
high frequency throughout the time period; they 
do not burst. The graph below shows the number 
of times the stemmed term “magn” occurs in 
MEDLINE per publication year (dashed line)  
and the corresponding burst levels (solid line). 

Temporal Studies—“When” 
Temporal analysis and visualization techniques are developed and applied to 
answer “when” questions. They aim to identify patterns, trends, bursts, or season-
ality in a sequence of observations. This spread reviews major temporal analysis  
types and presents exemplary visualizations on the opposite page. Additional 
analysis types and visualizations that involve a temporal aspect are discussed 
in Studying Dynamics (page 64). Opportunities and challenges when analyz-
ing and visualizing real-time data streams are discussed in Data Monitoring and 
Analytics (page 170) and Real-Time Data Visualization (page 172). 

The price of anything is the amount of life you exchange for it.
Henry David Thoreau
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The Beatles: Working Schedule, 1963–1966

Sankey Graph of Google Analytics Data
Google Analytics uses Sankey graphs (see page 63, Sankey Graph) to show the flow of traffic across pages  
on a website. Depicted here is the traffic for http://cns.iu.edu from July 25 to August 24, 2014. A total of 895 
sessions were recorded; most visitors came from the United States (Country/Territory). Exactly 314 users visited 
the home page (Starting pages). From the home page, visitors were most likely to go to the current team site,  
list of publications, information on how to contact CNS, news, and mission (1st Interaction). Red flows  
indicate drop-offs—visitors who idle or leave the site. As the number of interactions increases, the number  
of users decreases.

New York City’s Weather for 1980
This graph of New York City’s weather for 1980 shows the temperature values plus the normal high and low 
values for each day. Bar graphs in the middle section represent precipitation in inches for each month in 1980 as 
compared to normal monthly averages—with extremely high values indicated for March. Relative humidity for 
each day at noon is shown in the bottom section. 

In Investing, It’s When You Start  
and When You Finish
This graph shows annualized returns for the S&P 500 stocks actively traded in the  
United States over 91 years (1920–2011). Vertical years represent investments, and  
horizontal years represent withdrawals. The colors of the table cells signify how the money  
invested in a given year performed, depending on when it was withdrawn. Of the investment- 
withdraw-year combinations, few had money double within seven years (dark-green cells).  
Some combinations did not even keep up with inflation (dark red). 
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Trends and Distributions
A time-series graph (also called a timeline, chrono-
logical graph, or data-distribution graph) plots  
values over time, revealing the temporal distribu-
tion of a data set, such as the first and last time 
point, any absent values, outliers, trends, growths, 
peak latencies, and decay rates. If time is displayed 
on the horizontal axis, then it typically progresses 
from left to right. 

Time-series data may be discrete or continu-
ous. The former is best represented by using discrete 
objects (e.g., bars in bar graphs). Continuous data 
often connects measurements (e.g., via lines) to 
highlight trends. An example of a discrete time 
series can be seen in the Atlas of Science on page 16, 
Visionary Approaches; the graph presented there 
plots the lives of famous people by using horizon-
tal bars, each starting and ending with the dates 
of that individual’s birth and death. Short and 
long lives can be quickly identified, as can lifetime 
overlaps, which indicate whether two people may 
have met. An example of a continuous time series 
is the graph below showing U.S. first-class post-
age rates. Nominal costs, plotted in dark gray, show 

the continuous increase from two cents in 1885 to 
46 cents in 2013. Inflation-adjusted costs, plotted 
in light gray, show the relative stability of the cost 
of the stamp. The very same graph is given on page 
31 with an x-axis about half the size, substantially 
compressing time and making inflation-adjusted 
costs harder to read.

Data series can be plotted continuously (see 
third column, top), enabling long-term trends to 
be easily spotted. Repeated time scales (see below, 
bottom for a graph of the very same data) break data 
series into pieces (e.g., by year), making it easier to 
compare values but harder to spot overall trends. 
Color-coding can be used to highlight values above 
and below certain thresholds.  

Bar graphs and line graphs can be stacked.  
For example, the four graphs on the right plot  
the same data. The top-left graph is a stacked bar 
graph; the bottom-left is a 100 percent stacked 
version; the top-right line graph is nonstacked, 
making the constant value 30 light-gray line stand 
out; the lower-right is a 100 percent stacked version 
of the line graph.

Another example of a 100 percent stacked bar 
graph is Nicholas Felton’s 2005 WORK VS. PLAY 
report graph, which plots the amount of time spent 
working versus the amount of time spent playing. 
It inspired the graph on Research versus Teaching 
(see fourth column, top) that documents how much 
time an imaginary scholar may spend on research 
and teaching for each of the 52 weeks in a year. 
According to the graph, research (in light gray) is 
mostly conducted during spring break, summer, and 
the winter holidays, whereas teaching (in dark gray) 
consumes much of the spring and fall semester time.

Circular line graphs display a time series on the 
circular axis, typically sorted in a clockwise direc-
tion. A full circle may represent 12 hours (as on a 
traditional, analog clock face), 24 hours (see below 
visualization of household power consumption), 
or one entire year (see page 23, Causes of Mortality 
in the British Military During the Crimean War, and 
page 49, The Beatles: Working Schedule, 1963–1966). 

The visualization below plots energy usage 
per minute, using data collected in London, UK, 
during August 2009. The black line denotes average  
usage over more than four continuous days; the 
smoothed red line indicates the moving average of 
all usage data. Predictable surges in usage appear 
at breakfast time, dinnertime, and around 9 p.m.; 
unexpected usage is shown at 2 a.m.

Temporal  
Visualization Types  
Data changes over time can be represented using one static reference system 
with data overlays that communicate change (see page 49, Sankey Graph of 
Google Analytics Data); multiple static snapshots (see page 65, TTURC NIH 
Funding Trends); prerendered animations that can be started, stopped, fast-
forwarded, or rewound (see page 65, Gapminder Visualization); or interactive  
services that can support changes in reference system, data overlay, and visual 
data encoding (see page 67, U.S. Healthcare Reform). This spread reviews major 
visualization types and discusses their utility to communicate trends, see  
distributions, perform comparisons, and identify correlations. Visualizations of 
temporal change involving geospatial and topic maps as well as network layouts 
are discussed in Studying Dynamics (page 64).
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Comparison
Plotting data sets in the same reference system—
graph, geospatial map, or network—supports com-
parisons (see also page 66, Combination). Examples 
include the The Baby Name Wizard (page 69) and 
the line graph above that plots climatic variables 
and incidences of different diseases in London for 
each day of the year 1854. Cholera deaths are shown 
in blue, with the epidemic peaking at the end of 
August; the maximum value for a day is about 450 
incidences. Deaths from chronic diarrhea, rendered 
in yellow, occur throughout the entire year. 

See also the Spot Map of the Golden Square 
Cholera Outbreak of 1854 that shows the geospatial 
distribution of death from cholera around a water 
pump on Broad Street, substantiating John Snow’s 
theory that drinking water might be a potential 
cause of the disease (page 23). 

Multiple static snapshots (also called small 
multiples) and glyphs (see page 46, Statistical 

Visualization Types) can be used to support 
comparisons (see Icon Symbols on a Graph and Icon 
Symbols on a Map on page 66). 

Alluvial graphs were designed to show change 
over time. They honor sequential ordering and can 
be used to compare networks and their structural 
changes over time (see Evolving S&T Landscape  
on page 16, top-right and page 59, Alluvial Graph). 
Whereas parallel coordinate graphs (page 46) focus 
on the legibility of attribute values over multiple 
axes, using links to interconnect all values per 
record, alluvial graphs focus on the legibility of 
linkages and use efficient sorting of arrow bundles 
to improve legibility. 

Derivatives
It is common for scientific visualizations to  
show temporal derivatives, such as velocity, rather 
than time-based indications. Such derivatives are 
valuable in trying to understand the speed of  

diffusion for tangible or intangible entities. Heat 
maps and glyphs are commonly used to represent 
fields. Four different visualizations of the wind 
velocity of Hurricane Gustav, the second most 
destructive hurricane of the 2008 Atlantic  
hurricane season, are shown below. Arrow  
direction indicates wind direction, whereas arrow 
length denotes wind speed. Similar visualizations 
can be used to depict the flow of tangible objects 
(e.g., people or goods) or intangible objects (e.g., 
virtual currency or innovations) over space and 
time (see maps by Waldo Tobler in Atlas of Science, 
page 161).

Flows over Time and Space
Different visual representations exist that depict the 
flow or movement of tangible or intangible objects 
from one location to another.

Flow Map
Flow maps are a combination of a (typically 
geospatial) base map and a network data overlay  
in which the flow quantity is represented by  
the width (or weight) of a directed link. A major 
characteristic is that the flows are bundled (see 
example below). 

Some of the earliest known examples appear in 
the Album de Statistique Graphique by the Bureau  
de la Statistique Graphique of the Ministry of 
Public Works (1879–1899). Two other examples are 
Europe Raw Cotton Imports in 1858, 1864, and 1865 
(see page 80) and Napoleon’s March to Moscow (see 
Atlas of Science, page 84), both by Charles Joseph 
Minard. 

Links can be directed or undirected, weighted  
or not, and may have additional variable values.  
For example, the amount (quantity or value) of flow  
can be indicated with a link label but could also be 
depicted by link width (see below). If link width  
is proportional to a value, then a scale should be 
provided in the legend.

Migration maps use arrows and line width to 
indicate the volume and direction of migration 
probabilities (see visualizations on page 18). The 
type of flow is commonly indicated in the title, on 
the map, or using graphic variables. 

Link width can be approximate (see the links in 
the example below-left, indicating empty or loaded 
trucks). A legend is needed if different graphic 
symbols and/or variables are depicted. The entity or 
resource that has traveled (e.g., individual, company, 
water, or gas) and the type of travel made (e.g., via 
car, train, air, or pipe) may be indicated via link 
shape (see below-right) but the meaning of each 
link shape needs to be specified in a legend.

Space-Time-Cube Map 
Space-time-cube maps show movement in three 
dimensions using a two-dimensional terrain and a 
vertical time axis. Torsten Hägerstrand was among 
the first to map an individual’s path in a space-time 
coordinate system (see below). Career trajectories  
and other movements over geospatial or topical 
space can be represented via space-time cubes  
(see page 19, Nobelpreisträger für Physik). 

Animation
Change over time can also be depicted by having  
users watch a previously produced or manually 
steered animation showing such change over time. 
Although it is hard to focus on multiple changing  
objects at once, animation can be extremely  
effective in showing general trends (see page 64, 
Studying Dynamics).

Climatic Variables and Cholera and Diarrhea Cases in London, 1854

Streamlines Overlaid  
on a Geospatial Map

StreamlinesField Vectors at
Random Positions

Field Vectors on 
a Regular Grid

Unbundled Flow    Bundled Flow

Link Label    Link Width

Link Width    Link Shape
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Data Preprocessing
Geospatial data needs to be geocoded and georef-
erenced in order to be visualized. Distances and  
diffusion matrices may have to be calculated in  
support of geospatial analysis and visualization.

Geocoding
In order to place any data record on a map, its  
geocode (i.e., its location, as represented by an 
address, a census tract, a postal code, or geographic 
coordinates) must be determined. Geographic coordi-
nates refer to locations on the Earth’s surface that 
are expressed in degrees of latitude and longitude. 

Gazetteers are used to maintain geographic 
name data. They contain lists of geographic places 
and their latitudinal and longitudinal coordinates, 
including other information such as area, popu-
lation, and cultural statistics. For example, an 
author can be geolocated according to her affilia-
tion—and her trajectory comprised of a sequence 
of geolocations, starting from her degree-granting 
institutions, extending to the places where she has 
worked, and culminating at the organization at 
which she retired (see page 19, Nobelpreisträger  
für Physik). 

Alternatively, a Global Positioning System 
(GPS) can be used to acquire data on a person’s 
geospatial position. Here, a constellation of 24 
satellites orbiting Earth, at an altitude of 20,200 
kilometers, transmits signals that allow a GPS 
receiver anywhere on Earth to calculate its own 
location (see page 172, FourSquare Transportation 
Check-ins Showing Thanksgiving Travels). 

Reverse geocoding reads a point location (latitude 
and longitude) and returns an address or place name.  

In order to place a data record, it needs to be georefer-
enced (i.e., coordinates from a known reference system, 
such as latitude and longitude, have to be assigned 
to the coordinates of an image or a planar map).

Distance
For any two points on the surface of the Earth, the 
shortest distance between them is always along a 
great circle (i.e., the Earth’s circumference at its  
widest point). Although the Earth is in fact shaped 
as an oblique spheroid, great circle distance calcula-
tions tend to suffice for most applications.

Diffusion Matrix
Tangible objects (e.g., students, inventors, or money) 
and intangible objects (e.g., ideas, theories, or repu-
tations) diffuse over time and space. To compute  
the diffusion of features, a movement table is used.  
A movement table is a square matrix indicating 
movement from every point to every other point per 
time duration. Sample tables may represent author 
movement based on affiliation data or knowledge-
diffusion data based on citation linkages. 

Clustering
Clustering (also called aggregation) of records may 
be driven by geospatial properties, by existing clas-
sifications, or in a data-driven way. A large number 
of clustering problems exist. Shown in the next 
column are ten sample layouts of dots in which dot 
proximity indicates similarity.

Using Geometric Grids
Geospatial data can be aggregated by dividing 
geospatial areas into zones, such as regular grids, 
honeycomb patterns (see In Terms of Geography in 
Atlas of Science, page 103), or arbitrary patterns (e.g., 
those of a grid designed to match the shapes of 
building rooftops in order to show energy waste;  
see page 31, Maps). 

Using Existing Classifications
Existing regional zonings and groupings can be 
used to aggregate geospatial data by neighborhoods, 
municipalities, sectors, states, regions, or nations. 

In the United States, a census block is the smallest 
geographic unit used by the U.S. Census Bureau  
for reporting census data. A census tract combines 
adjacent census blocks into a group of approximately  
4,000 people. In Europe, the Nomenclature of 
Units for Territorial Statistics (NUTS) is a standard 
for referencing the subdivisions of countries for 
statistical purposes. 

Data-Driven Clustering
Given a set of geolocated records, different algo-
rithms can be applied to group them geospatially. 
K-means clustering can be run to create k groups  
of geospatially close records. 

Visual Generalization 
As the area that is being mapped becomes larger 
(or the density of items in an area increases), fewer 
individual features can be shown on a map. For 
example, individual houses can be depicted at 
a scale of 1:100 but not at a scale of 1:100,000. 
Decisions need to be made about what is important 
to retain (e.g., a specific selection of author affili-
ations or a general array that reflects the area they 
work in). Although generalization entails informa-
tion loss, it should nevertheless be able to preserve 
the essence of the map while maintaining geometric 
and attribute accuracy, visual hierarchy, and aesthetic 
quality. To ease map reading and navigation  
between levels of generalization, key features in  
the original map should remain prominent (see 
examples below).

Geospatial Studies—“Where”   
Geospatial analysis (also called geostatistical analysis) has a long history in  
geography and cartography. It was developed to answer “where” questions by 
using statistical models and tools for spatial-data exploration and map generation. 
Specifically, it aims to answer where something happens and with what impact 
on neighboring areas. Given a limited number of data measurements, it supports 
the exploration of data variability, including unusual data values; the calculation 
of spatial relationships and global and local trends; the computation of statistically 
valid prediction surfaces, along with prediction uncertainties; the rendering of 
data as spatial animations to portray changes and flows (see Impact of Air Travel 
on Global Spread of Infectious Diseases, Atlas of Science, page 150); and the creation 
of reliable maps offering predictions, prediction errors, quantiles, and probabili-
ties for improved decision making.  

Everything is related to everything else, but near things are more related than distant things.  
Waldo Tobler’s first law of geography
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Skitter Internet Map
Using a circular layout, the network below represents 1,134,634 IP addresses and 2,434,073 IP links of  
topology data gathered from 25 monitors probing approximately 865,000 destinations spread across 76,000 
globally routable network prefixes (62 percent of the total). IP links refer to immediately adjacent addresses  
in a traceroute-like path.

The Debt Quake in the Eurozone
This information graphic by ColumnFiveMedia and Mint shows change in government debt as a percentage  
of GDP from 2000 to 2010 for all 27 European Union countries, including the 17 within the Eurozone.

Etsy Sales Map
Ulani, an avid knitter and crocheter, sold 240 handmade items via Etsy between February 2007 and May 2009 
to consumers around the globe: 138 from the United States, 36 from Germany, 19 from Canada, and 12 from 
the United Kingdom. She created this infographic to show where she sent each item. Vertical bar graphs at top 
feature images of items purchased per customer. Color-coded horizontal bar graphs depict the number of items 
purchased by consumers per country. Explore high resolution versions of all images at http://scimaps.org/atlas2.

In the Shadow of Foreclosures 
Hannah Fairfield created this stepped relief map for The New York Times online. It shows the unusually large 
number of delinquencies and foreclosures for subprime mortgages (a type of loan granted to individuals that 
would not qualify for conventional mortgages because of poor credit histories). The number of subprime mort-
gage foreclosures as a percentage of all subprime mortgages by geographic region are mapped to area height; 
Fort Meyers-Cape Coral has the highest value with 24.1%. 
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Discrete Space
Data can be raw or computed; it must be possible  
to aggregate the data via artificial collection units.

Dot Density Map
A dot density map depicts a set of data records by 
using dots to show the density, distribution, and 
skews of data. Each dot represents the same num-
ber of data records (see below map of San Francisco 
showing about 1,000 crimes recorded in 2009 and 
2010). A dot may represent multiple data records; 
if one dot represented 100 records, an area with ten 
dots would then denote 1,000 records. In addi-
tion to indicating numbers of records, dot maps 
reveal the location and spatial distribution of those 
records and are frequently used to show population 
distribution. Dot maps can be misleading, however, 
as the spatial variation within aggregated regions 
cannot be represented, sharp gradients cannot be 
shown, and dots may be misread as point symbols.

Proportional Symbol Map
A proportional symbol map (also called a gradu-
ated symbol map) plots the value of data variables 
proportionally to graphic symbol types (page 32) 
and their graphic variable types (page 34). This map 
type should be used if the data has absolute values 
and occurs at points, or can be aggregated at points, 
within geospatial areas. It should not be used to 
map densities, ratios, or rates (e.g., population  
densities); for such purposes, a choropleth map  
(discussed ahead) should be used instead. Circles 
are the most popular proportional symbol because 
they are easy to construct, scale, and read (e.g., 
overlaps are much easier to spot). 

Examples include maps with bivariate circles, 
such as those used in The Debt Quake in the Eurozone  
(page 53); maps with pie-chart nodes coded by  
area size, as in U.S. Healthcare Reform (page 67);  
or the map below that uses size- and shape-coded 
linguistic symbols (country names) to visually 
represent each country.

Choropleth Map
A choropleth map represents data variables—such 
as densities, ratios, or rates aggregated over artificial 
collection units—through the coloring or shading 
of those areas. It is used when predefined statistical 
areas (e.g., census tracts, voting districts, or school 
districts) or administrative political subdivisions 
(e.g., townships, counties, or states) are important  
to visualize (e.g., when displaying population  
density or per-capita income per census track or 
country). Examples include A Global Projection of 
Subjective Well-Being (page 98) and The Millennium 
Development Goals Map (page 120). U.S. unemploy-
ment in 2009 is shown in the county-level map 
below; compare with the state-level choropleth  
map of U.S. election data on page 24.

Phenomena that are continuous (e.g., average 
annual rainfall, temperature, or population distribu-
tion) should not be mapped via this method, because 
their distributions are not controlled by political or 
administrative boundaries. Instead, isarithmic maps 
(see opposite page) should be used, in which region 
boundaries are defined by data patterns and each 
isoline has a specific value. When using choropleth 
maps, a number of challenges arise, such as the illu-
sion of sharp borders, vast regions appearing too 
homogeneous, or exceptionally small regions that 
prove too small to see.

Stepped Relief Map 
The stepped relief map (also called a prism or block 
map) elevates areas proportionally to their data  
values. Examples include the visualization of energy 
usage by city block in New York City on the jacket 
of this Atlas, In the Shadow of Foreclosures (page 53), 
and On Words—Concordance (page 57).

Dasymetric Map
The dasymetric map is a hybrid of the choropleth and 
isarithmic maps (see opposite page). It utilizes stan-
dardized data but places aerial symbols by taking into 
consideration actual changing densities within the 

boundaries of the map. For example, the map below 
plots climate and plant hardiness zones (purple colors 
are coldest and orange is warmest) on top of a U.S. 
state boundary map for easy location referencing.

Cartogram Map
Cartograms (also called value-by-area maps) distort 
geographical areas in proportion to data values. For 
example, a cartogram of world population may show 
countries as being either larger or smaller in propor-
tion to their populations while aiming to preserve 
the location of features insofar as possible. A car-
togram is most effective if large areas have small 
values (i.e., the areas will appear smaller) and small 
areas have large values (i.e., the areas will appear 
enlarged). The cartogram is mostly used for world, 
continental, and country maps, as familiarity with 
nondistorted regions is necessary to read the map 
correctly. Three major types exist: disjoint, pseudo-
continuous, and continuous cartograms.

Disjoint cartograms (also called noncontiguous  
cartograms) preserve the shape of size-coded regions 
and are noncontinuous. Each region is scaled 
according to a selected data variable (e.g., population) 
and positioned with relative accuracy in relation to 
neighboring regions. The map below shows a 
disjoint cartogram of the U.S. Electoral College. 

Pseudocontinuous cartograms (also called 
Dorling cartograms) transform regions into 
geometric shapes (e.g., circles), which are sized 
proportional to the magnitude of a data variable 

Geospatial  
Visualization Types    
Different map types serve different purposes. Road maps help drivers to find 
their way. Weather maps show the temperature, air pressure, or rainfall in a 
given region. Geological maps show resources underground and are used to 
help plan building work or drilling for gas or oil. Here, the focus is on thematic 
maps that show a particular theme connected with a specific geographic area. 
Data portrayed may be physical, social, political, cultural, economic, sociologi-
cal, agricultural, or technical; or it may reflect any other aspects of a city, state, 
region, nation, or continent to help viewers identify or compare spatial patterns. 
The maps are grouped by the space they represent: discrete versus continuous. 
Different types of line maps depicting flow are discussed as well; for information 
on space-time-cube maps, see the discussion in Temporal Visualization Types 
(page 51).
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and placed in approximate locations. Shown below 
is a U.S. map of all contiguous states, each of which 
is represented by a circle that is size-coded per the 
state’s total rate of obesity and color-coded per the 
percentage (or prevalence rate) of obesity among the 
state’s total population (see legend for scale used). 

Continuous cartograms aim to preserve prox-
imity and continuity. However, as they may distort 
shape extensively, they are more difficult to read 
and construct. Examples include Venture Capital 
Disbursed (page 9), Ecological Footprint (page 90), and 
the colored U.S. election maps (page 25).

Continuous Space
Qualitative or quantitative data can be mapped onto 
continuous space using different visualization types.

Elevation Map 
An elevation map (also called an altitude map) 
plots discrete or continuous data to height values. 
This is done in relief maps, such as that of the San 
Francisco crime map below, which depicts higher 
crime rates by higher elevations.

Isarithmic Map
Isarithmic maps (also called isogram maps) use  
isolines to map continuous data such as elevation or 
population density. An isoline is a line along which 
all points are of equal value. Types of isolines include 
isohypses, or contour lines used to represent eleva-
tion; isotherms, used for temperature; and iso-
chrones, for travel time. 

The smaller the distance between isolines, 
the steeper the slopes of maxima (e.g., hills) and 
minima (e.g., valleys). Areas between isolines 

can be shaded or colored, such as in a heat map, 
which is a type of isogram map; shadows can be 
cast using an imaginary light source (called shaded 
relief) to give the map a three-dimensional appear-
ance. Minima and maxima can be indicated using 
hachures, and isolines can have values.

When computing isolines (e.g., for population 
density, which equals the population of a census 
district divided by the surface area of that district), 
each calculated value is presumed to be the value of 
the variable at the center of the area, and isolines 
are drawn by a process of interpolation.

The below map of San Francisco renders the 
same 1,000 crimes as an isarithmic map with light 
blue denoting low crime and red indicating high 
crime areas.

Isochrone Map
Isochrone maps (also called travel time maps or 
anamorphic maps) utilize isolines to show equal 
travel time. They were first used in the Album 
de Statistique Graphique, by the Bureau de la 
Statistique Graphique of the Ministry of Public 
Works, led by Émile Cheysson (1879–1899).

The isochrone map below documents travel time 
to Rome in July, circa 200 A.D., via sailing ship, 
civilian riverboat, and walking. Contours indicate 
time in days, ranging from 7 to 42 days. This map 
and others can be explored interactively online to 
understand how travel times and transport prices 
structured the Roman world. 

Vector Fields
Diffusion potentials and gradients can be visualized 
as continuous spatial gravity models. For an exam-
ple that is based on such a model, see the central 
image on page 161 of the Atlas of Science that depicts 
the pressure to move in the United States.

Given the distribution of particular features over 
geographic space as raster data, vectors can be deter-
mined by using the density gradient to compute the 
“pressure field” exerted by these points. The pressure 
field can then be used to predict the tendency for 
(outward) diffusion and (inward) absorption/adop-
tion at a certain point in geospatial or topic space. 

Vector fields can be visualized using glyphs 
(e.g., length- and width-coded arrows) to indicate 
the potential and gradient (force and direction) of 
the field. See the wind velocity visualization for 
Hurricane Gustav on page 51, bottom-left.

Line Map
Line maps (also called linkage maps) show the paths 
that either tangible or intangible objects take to get 
from one geospatial place to another. Ernest George 
Ravenstein’s map of the Currents of Migration (1885) 
is one of the first line maps ever created.

Route Map
Route maps depict public transportation systems, 
such as walkways, railroad tracks, streets, and air 
traffic corridors, but also show distribution net-
works, comprising water pipes or electric cables. 
Variables such as the number of street lanes or 
maximum speed, pipe diameter, or cable voltage 
can be encoded. Note that route maps encode only 
information about the paths themselves, whereas 
flow maps (page 51) encode details on flow  
content and volume.

Subway Map
Subway maps aim to simplify the route map layout 
by optimizing a number of desirable properties such 
as symmetry, evenly distributed nodes, uniform 
edge lengths, minimized edge crossings, orthogonal 
drawings, and minimized areas, bends, slopes, and 
angles. These criteria may be relaxed to speed up the 
layout process. An example is the PhD Thesis Map in 
the Atlas of Science (page 90).

Flow Map
Flow maps (page 51) represent any matter that 
flows, moves, and migrates together with the direc-
tion and amount of such flow. They are used to visu-
alize the trajectories of tangible objects (e.g., scholars  
or physical goods) and intangible objects (e.g., ideas, 
expertise, or digital documents). In contrast to route 
maps, they show little of the concrete paths that 

connect one point to another. Examples are the  
chord graph of human migration flows during 2005 
to 2010 in below figure and the visualizations on 
page 18.  

Strip Map
Strip maps (also called diagrammatic maps) distort 
geospatial and other types of space to improve  
legibility. They focus on the sequential relation-
ships of items shown (e.g., landmarks on a road 
trip) instead of on directional and geographic rela-
tionships. An early version of the strip map is the 
Peutinger map (Atlas of Science, page 10), which 
shows major Roman Empire travel routes on an 
approximately 20' x 1' (60 m x 30 cm) scroll. A 
more recent implementation is Line Draw, which 
generates abstract route maps when given a travel 
starting point and destination. The sample route 
below shows directions from Bellevue (right) to 
Seattle (left). Line Draw details best travel routes 
for leaving a city and major highways between cit-
ies; plus, it can zoom in to a specific address, when 
needed. Selected information such as street names 
and highway numbers are provided. Distances and 
travel times may also be noted.

Space-Time-Cube Map
This map type shows space (x-y plane) with the 
third spatial dimension to represent time (the 
z-axis); see discussion and example on page 51 and 
Nobelpreisträger für Physik on page 19).
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Data Preprocessing
Preprocessing typically entails stemming, stopword 
removal, and identification of unique terms as well 
as extraction of any single or compound terms that 
are to be used in the semantic analysis. The result  
is a matrix that documents how often a sequence  
of terms appears in each record; thousands of 
unique term combinations times thousands or even 
millions of records proves to be a very high-dimen-
sional semantic space. To ease navigation and pro-
cessing of this space, different similarity measures  
and dimensionality-reduction approaches can be 
applied to generate a much lower dimensional 
space, which preserves the main structure that is 
inherent in the original data. 

Fielding 
Typically, the first step in data processing is field-
ing. Although some text may be semantically tagged 
(i.e., it is known what part of a text file represents the 
title, author name(s), address field, abstract, different 
sections, and references), most text tends not to be 
fielded. Manual or algorithmic methods have to be 
applied to parse the text and to identify what parts 
of the text represent what semantic content.

Text Selection
Next, a decision has to be made as to what part of 
the text should be used in a study. Titles (e.g., from 
scientific publications) are typically short and there-
fore have comparatively few words to reveal the topic 
of a given paper. For example, in the title “All you 
ever wanted to know about X,” only “X” is relevant to 
the meaning of that paper. Abstracts and keywords 
are commonly used in semantic analyses. Full text is 
required for citation-context analyses but is gener-
ally large in size, and more disk space and processing 

power is required to process full text. Furthermore, 
care must be taken to normalize for different text 
lengths, because the probability of a term occurring 
in a record rises as text size increases.

Stemming and Stopword Removal
Stemming is used to reduce terms to their stem or 
root form (e.g., “scientific” and “scientifically” are 
reduced to the root form, “scientif ”). As a practice,  
stemming considerably reduces the number of 
unique terms. Stopword lists are applied to exclude 
common (and therefore dispensable) words or 
phrases such as “the” or “a” from a textual analysis.  
Standard stopword lists exist, but users can add 
additional terms as needed for a specific analysis. All 
text may be converted to lowercase to greatly reduce 
the number of unique terms; however, terms like 
“IT” and “it” then become identical in the process.

Tokenization
Tokenization breaks up text into words, phrases, 
symbols, or other meaningful elements, called tokens. 
Special attention is paid to punctuation, including 
hyphens. Delimiters are used to separate tokens (e.g., 
the string “science and technology” would be split 
into three tokens: “science|and|technology”). Words 
or phrases composed of multiple terms to commu-
nicate one concept (e.g., “bibliographic coupling”) 
can be extracted together in order to preserve the 
intended meaning.

Sequences of n items occurring in text are called 
n-grams. They may be characters, syllables, or 
words. For example, “science and technology” can 
be subdivided into three unigrams (science, and, 
technology), two bigrams (science and, and tech-
nology), and one trigram (science and technology). 
During the n-gram construction process, punctua-

tion marks are typically treated as a separate term 
except for currency symbols, decimal components 
of numbers, and apostrophes indicating possessive 
case. Case is frequently ignored, with some nega-
tive implications for search specificity (see above 
“IT” and “it” example). The number of n-grams 
that can be extracted from a corpus greatly exceeds 
the number of terms in that corpus. The Google 
Labs’ Ngram Viewer supports the quantitative 
study of trends based on n-grams appearing in 
more than five million books published between 
1800 and 2000. Shown below is the search result 
for each of the following terms: science, technol-
ogy, art, design, and poetry. The most dramatic 
changes appear for “design,” as use of the term 
starts high, then wanes, then waxes again. In 
contrast, the term “technology” is rarely used 
before 1920; after 1960, however, a surge in the 
rate of use occurs, likely caused by the space race 
during the Cold War that made people aware of 
technological advancements.

Normalizations
Normalizations are often necessary in text com-
parisons. For example, when comparing texts across 
years, the n-gram frequencies for each year should 
be divided by the total number of words that appear 
in the corpus for that year. The same normalization 
also works for comparing texts of different lengths.

Descriptive Term Identification
High- and low-frequency terms (e.g., extremely com-
mon terms or misspelled words) may be excluded 
from a semantic analysis as they contribute little to the 
understanding of the textual similarity of text records.

Gerard Salton’s term frequency/inverse document 
frequency (TF/IDF) weight can be calculated to 
identify the most descriptive terms. The weight of  
a term t equals the product of the term frequency 
(TF) and the inverse document frequency (IDF). 
IDF is calculated by taking the logarithm of the 
total number of records divided by the number of 
records that contain the term t. That is, the TF/IDF  

value increases proportionally to the number of times 
a term appears but is offset by the frequency of the 
term in the corpus. Other approaches such as Latent 
Semantic Analysis (LSA) or topic detection can 
be applied to compute latent terms or topics from 
unstructured collection of text. The similarity of 
two text records is then computed based on the most 
descriptive terms or topics. For details, see publica-
tions listed in page 178, References & Credits. 

Tagging
Grammatical tagging, such as part-of-speech (POS) 
tagging, identifies if a word is a noun, verb, or adjec-
tive, singular or plural, and so on. Lookup tables 
and more advanced linguistic analyses are used to 
identify publication titles, author names, or author 
addresses in a publication record (see Fielding).

Distributions
Understanding the topical distribution of text and its 
change over time is a major goal of topical studies. 

Term Frequency and Distributions
The number of times a term occurs in a text corpus 
is called term frequency. It is often equated with  
the term’s level of importance or relevance. Raw fre-
quency counts can be deceiving because they do not 
account for text length or change in the number of 
text records published per year. Term frequencies can 
be graphed using a line graph (see below) or mapped 
onto the graphic variables of graphic symbols (see On 
Words—Concordance on opposite page, which maps 
the frequency of major terms used in two books on 
American politics onto the height of each term). 

Temporal Dynamics
Term frequency in a corpus may change over time. 
Selecting those terms, or n-grams, that have the 
most absolute change over time can lead to new 
insights. Burst detection, discussed in Temporal 
Studies —”When” (page 48), is frequently applied to 
identify sudden changes in the frequency of terms, 
author names, or citation reference strings. 

Topical Studies—“What”  
A linguistic analysis of text is commonly applied to answer “what?” questions. 
Large-scale text corpora (e.g., titles, abstracts, or full texts) of papers, patents, grants, 
job applications, or email data streams are semantically preprocessed, analyzed, 
and visualized to identify term frequency distributions or temporal dynamics 
inherent in the text. This spread discusses different data processing steps together 
with approaches that aim to identify topic distribution and topical change over 
time. Results are visualized using lists, charts, graphs, maps, and network layouts  
(see sample visualizations on the opposite page and science maps in Part 3 of this 
Atlas). Different topical visualization types are discussed on the subsequent spread. 

We are what we write, we are what we read, and we are what we make of what we read. 
Martin Bloomer, Phil Hodkinson, and Stephen Billett 
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On Words—Concordance
This visualization shows the top ten words that occur most frequently in two books on 
American politics: Lies and the Lying Liars Who Tell Them (in blue) and Slander: Liberal Lies 
About the American Right (in red). 

Is Facebook-Is Twitter Phrase Graph  
This graph shows what people search for when using Google’s autocomplete search function. One can enter two phrases to see 
how they are commonly completed. In this instance, apparently, both online services are frequently co-occurring with “mobile 
free” and “down,” but only “is twitter” is associated with “free” while the phrase “is facebook” co-occurs with “going to charge.”

Sentiment Analysis of the Bible
Several Bible translations were analyzed to compute a composite sentiment average for each 
given verse. Phrases like “I like X” were flagged as positive and colored in black, whereas 
phrases like “I hate Y” were flagged as negative and colored in red. 

Editions of Darwin’s On the Origin of Species 
Six editions of Darwin’s classic book are shown here. Each edition is color-coded, and text new to that edition is overlaid upon  
the book’s chapters I through XV, arranged from left to right. The book size appears to have changed considerably—from approxi-
mately 150,000 words in the 1859 first English edition to about 190,000 words in the 1872 sixth edition. New phrases were also 
introduced (e.g., “survival of the fittest,” introduced by British philosopher Herbert Spencer, didn’t appear until the fifth edition). 
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Composition and Frequency
Topical composition and term frequency may be 
represented with lists, tag clouds, or pie charts.

Lists
Texts such as book chapters or software code can 
be plotted, revealing the frequency of terms or the 
number and length of chapters or program mod-
ules (see page 57, Sentiment Analysis of the Bible). 
Jonathan Harris’s Wordcount below arranges the 
86,800 most frequently used English words side 
by side as one very long sentence, starting with the 
number one most frequently used word, “the,” on 
the left. The red number below each term indicates 
its frequency rank.

Ben Fry’s rendering of Editions of Darwin’s On 
the Origin of Species (page 57) uses color-coding 
to highlight changes over time. Stephen Eick’s 
highly interactive Seesoft interface (page 69) uses 
color, size, and other coding to highlight software  
code passages that match a search query, were 
modified, or were written by a certain program-
mer. Given a textual listing, linkages and networks 
can be overlaid; see the Taxonomy Visualization of 
Patent Data in the Atlas of Science (pages 132–135), 
which shows references and citations between 
patents and patent classes.

Tag Cloud
Tag clouds (also called word clouds) lay out words in 
a given area to provide a quick overview of content 
coverage. Words may be color- and size-coded by 
additional attributes, such as quantitative term  
frequency or qualitative type (e.g., part of speech,  
singular/plural, etc.; see page 56, Tagging). They may 
also be sorted alphabetically or by frequency. Shown 
below are the top 27 unique words that make up the 

opening paragraph of this page. Sorted alphabeti-
cally, they are also size-coded by the number of 
occurrences; “page” is thus rendered as the largest 
word, because it appears the most often (five times).

Words can be positioned according to size,  
with larger words set near the center and smaller 
words grouped closely around them for optimal 
use of space. The word cloud below, created with 
Wordle, shows the same text as the previous word 
cloud; however, the terms have not been alphabet-
ized, and certain words have been capitalized per 
the original content.

Tag clouds can have arbitrary shapes (see 
Visualizing Trends and Dynamics: 30 Years of 
Scientific Development in Atlas of Forecasts). Words 
can also be hyperlinked, so that one may click 
on a word to highlight or retrieve all data records 
containing that word, in support of content naviga-
tion (see page 68, Interaction).

Graphs 
The topical composition of a data record (e.g., a 
paper) or data set (e.g., all publications by an author, 
institution, or country) can be represented using bar 
graphs, radar graphs, or parallel coordinate graphs 
(see page 46, Graphs).

Structure
The topical structure of text can be represented 
using different reference systems that range from 
circular to geospatial to network graph.

Circular Graph
Raw text, categories, or classification hierarchies 
can be plotted in a circle or oval, creating a semantic 
space that can be used to plot other text. For exam-
ple, the SciVal rendering of the UCSD Map of Science 
and Classification System (Atlas of Science, page 13) 
plots the 554 subdisciplines by grouping them within 
13 color-coded disciplines, all arranged in a circle 
(see below). Institutions or countries that have many 
publications in a single discipline, such as Chemistry, 
will be plotted close to the periphery (see blue cir-
cle), whereas those that have broad coverage will fall in 
the middle (see the black circle in center). Size- and 
color-coding of nodes and edges can be used to depict 
other properties, such as the number of publications 
per subdiscipline (see page 96, The Scientific Roots of 
Technology, and page 118, U.S. Vulnerabilities in Science). 

A network layout of the UCSD Map of Science 
and Classification System with data overlay can be 
seen in Topical Locations of Papers (page 43).

W. Bradford Paley’s TextArc Visualization of  
“The History of Science” (Atlas of Science, pages 
129–131) lays out text in a circular manner, creating 
a semantic space in which words can be placed.

GRIDL 
The GRaphical Interface for Digital Libraries 
(GRIDL), developed by Ben Shneiderman and  
colleagues, uses a tabular reference system to plot 

text records such as publications (page 69). The 
x-axis is commonly used to plot temporal or spatial 
properties (e.g., years or author locations, respec-
tively). The y-axis can display topic hierarchies; tree 
branches can be extended or collapsed. Drilling 
down into a subtopic corresponds to categorical 
zooming. Text records (e.g., papers) are placed in 
relevant grid cell(s)—either as a dot or, if there are 
too many, as a bar. Dots and bars can be color-
coded to represent additional attributes. GRIDL is 
highly interactive (see page 68, Interaction). 

Crossmap
Crossmaps plot papers, authors, and other scholarly 
entities in a two-dimensional space. They were 
developed by Stephen Morris and colleagues for 
technology forecasting. Axes can use categorical 
data (e.g., author names) or ratio data (e.g., pub-
lication years). Some are sortable (e.g., alphabet-
ized or sorted by year) or organized according to a 
topical cluster hierarchy (see below). Once the axes 
have been created, data variables (e.g., scholarly 
papers) can be placed, and geometric symbols (e.g., 
circles) may be size- and color-coded (e.g., by the 
number of recent citations, as in the Timeline of  
60 Years of Anthrax Research Literature; see Atlas  
of Science, pages 94–97). 

Jittering (i.e., adding small random values to the 
position values of graphic symbols) can be applied 
to reduce overlap. Geometric symbols (e.g., circles 
representing papers that are published on a given 
topic in a certain year) can be interlinked (e.g., to 
represent citation linkages). Additional graphical 
elements can be used to indicate cluster boundaries, 
research fronts, bursts, or external events. 

Crossmaps can also be rendered as Isoline Maps 
to show the growth and decline of different topic 
areas over time.

Isoline Map
Isoline maps (page 54, Geospatial Visualization 
Types) can be used to depict the structure of topic 
spaces (see next page top-left or example on page 
134, Knowledge Cartography). In this type of map, 
continuous lines join existing points that are of the 

Topical Visualization Types    
Visualizations of text may address different insight need types (page 26), such 
as the topical structure and composition of text, trends, or relationships. Diverse 
visualization types (page 30) are used. Temporal visualization types, such as 
Alluvial graphs (page 51), can be used to communicate topical trends. Geospatial 
metaphors are frequently applied to depict topic spaces (see page 52, Geospatial 
Studies—“Where”). Network analysis and visualization are employed to commu-
nicate topical relationships (see page 60, Network Studies—“With Whom”).

An
al

yz
e 

&
 V

isu
al

iz
e

M
ot

iv
at

io
n

D
ep

lo
y

In
te

rp
re

t 
Fr

am
ew

or
k

Ac
qu

ire

58      Part 2: Envisioning Science and Technology



same value. Color-coding or height-coding can be 
employed to ease legibility (see figure in Crossmap 
section or the GIS Map of White and McCain in Atlas 
of Science, page 34).

Self-Organizing Map 
Self-organizing maps (SOMs) use a two-dimen-
sional output space to represent the main structure of 
a much higher dimensional semantic space. Shown 
below is a stream of input vectors of red, green, and 
blue (RGB) value triples. After training the SOM, 
each map node in the output space is represented by 
a model vector that is similar to the input vectors it 
represents; similar model vectors appear close to one 
another. The output space can be a grid of any size 
and shape, possibly wrapping around the edges. It 
may also be colored (e.g., to indicate the number of 
input vectors per output node) and clustered (see In 
Terms of Geography in Atlas of Science, page 102).

Shown on top-right is a cutout of a large-scale 
topic map generated using natural language process-
ing, topic modeling, a self-organizing map, and GIS 
rendering of more than 11,000+ clinical admis-
sion records. Color-coding is used to indicate how 
focused different areas are (i.e., the degree to which 
a particular region in the display space is dominated 
by a limited number of topics as opposed to repre-
senting a broad mixture of topics). Green indicates a 
very low focus, yellow a medium focus, and brown a 
very high focus. The Cancer region, including lung 
and breast cancer, is highly focused, whereas the 
Nausea region in the bottom-right is less focused. 

Trends
Different types of graphs are used to show the  
evolution of topics over time (see page 48, Trends).

History Flow
A history flow visualization depicts the revision 
history of a given text. An upside-down stacked  
line graph is used to show the existence and length of 
text chunks over time (see below). Time points or 
revision numbers run from left to right. Character or 
word counts determine the y-axis placement. Bands, 
representing text chunks, can be color-coded to 
indicate author, title, topic, and other subjects. 

The History Flow Visualization of the Wikipedia 
Entry “Abortion” depicts multiple versions of the 
same Wikipedia entry (see Atlas of Science, pages 
124–127).

Alluvial Graph
Alluvial graphs (also called alluvial diagrams) can 
be used to show the merge and split of topics over 
time. One example is the Evolving S&T Landscape 
(page 16, top-right). Another example appears 
below. At top, a network is shown for an earlier time 
(left) and a later time (right). Major topic clusters are 
color-coded. Changes in cluster size and composition  

over time are then shown at bottom, using an 
Alluvial graph with colored bands that correspond 
to major colored clusters. 

Stream Graph
A stream graph (also called a theme river) describes 
thematic changes in a set of texts. The metaphor of 
a river, flowing left to right through time, is used to 
indicate such change. Each topic is represented as a 
“stream” that narrows or widens to indicate how the 
strength of a topic decreases or increases in associ-
ated documents at any given point in time. The 
streams can be color-coded and labeled (see below); 
some are even interactive (i.e., by hovering over a 
stream online, one can bring up information on the 
texts that it represents).

Stream graphs can also be rendered as stacked 
line graphs for the purpose of improving legibility 
and easing comparisons. Text labels can be added 
to ease interpretation (see example at top-right of 
this page, which shows the top 50 most dominant 
news threads between August 1, 2008, and October 
31, 2008; the thickness of each strand corresponds 
to each thread’s volume over time).

Spaces between streams help to separate major 
topics. Additional text and symbols can be added 
to help interpret the evolution of topics (see the 
TextFlow visualization next column, top).

Relationships
Associations and dependencies between texts are 
frequently represented by links.

Arc Graph
Arc graphs (also called arc diagrams) can be used 
to represent structures in text strings, such as pat-
terns of repetition (see also page 31, Networks). 
Examples include Visualizing Bible Cross-References 
(page 150) and The Shape of Song that uses arcs to 
connect repeated sections of music with translucent  
arcs as shown below. The height of an arc can be 
used to represent attributes other than distance. 
Color- and weight-coding of linkages (above and/or 
below a vertical or horizontal line) can be employed 
to communicate additional attributes.

Networks
Network layouts are widely used to depict topic 
spaces. The Map of Information Flow (page 9, lower-
right) uses directed, size-coded linkages to depict 
citations between major areas of science.

Part 2: Envisioning Science and Technology      59



Seeing Networks
In 1735, mathematician Leonhard Euler solved the 
Königsberg bridge problem using a network approach 
that is now considered to be the first theorem of graph 
theory. He reformulated the problem as a network 
graph in which unconnected land masses in the city 
of Königsberg are visualized as nodes (labeled A to 
D in below map). Those nodes are linked by edges 
that represent the seven bridges of Königsberg (gray 
bars). Using this approach, Euler proved that there is 
no continuous walking path (i.e., in order for all seven 
bridges to be crossed, some paths must be retraced).

In social network analysis, network nodes 
commonly denote people. Diverse relationships 
(ties) are studied, including similarities (e.g., share 
same spatial space or temporal space); memberships 
(e.g., same group or activity); attributes (e.g., gender 
or attitude); social relations (e.g., family member-
ship, friendship); affective ties (e.g., loves or hates); 
cognitive ties (e.g., one knows the individual or 
knows about him/her); interactions (e.g., has talked 
to, helped, or collaborated with individual); and 
flows (e.g., knowledge or resources). 

In S&T studies, different network relations 
between individuals, institutions, countries, etc., are 
studied, such as communication relations (e.g., who 
talks to whom), instrumental relations (e.g., who 
asks whom for expert advice), boundary penetration  
relations (e.g., who is on whose board of directors), 
sentiment relations (e.g., friendship cliques), power 
relations (e.g., who follows whom), kinship relations  
(e.g., who is related to whom), and transaction  
relations (e.g., who gives gifts to whom). A listing  
of books that provide a general introduction to 
network science and examples can be found in 
References & Credits (page 178).

Network Extraction
In the study of S&T, common network nodes (or 
units of analysis) are authors, institutions, and 
countries as well as words, papers, journals, patents,  
and funding awards (see Atlas of Science, page 54, 
Conceptualizing Science). Nodes of the same 
type can be interlinked via different link types 
(e.g., papers based on topical similarity or on cita-
tion linkages, such as co-citation or bibliographic 
coupling). Nodes of different types can also be 
interlinked (e.g., author–paper or paper-funding 
networks). The resulting networks may be either 
directed or undirected, weighted or unweighted, 
labeled or unlabeled. 

Network Types
Different types of networks exist, all with  
markedly different properties. Key types are 
reviewed here.

Tree Graph
A tree graph (also called a connected forest) is a  
simple, connected, undirected, and acyclic graph.  
A tree with n nodes has n-1 edges. In rooted trees, 
all nodes except for the root node have only one 
parent node. Nodes that have no children are called 
leaf nodes. All other nodes are referred to as inter-
mediate nodes. Organizational charts and classifi-
cation hierarchies have a tree structure.

Network Graph
Three different types of network graphs are  
commonly distinguished: random, scale free,  
and small world.

Random networks are formed by taking a set 
of isolated nodes and randomly adding successive 
edges between them (see the U.S. Street Network 
with Gaussian Distribution, above-left). 

Scale-free networks have an uneven distribution 
of connectedness, whereby most nodes have few 
connections and few nodes are “highly connected” 
hubs (see the U.S. Airline Network with Power-Law 
Distribution, above-right). 

Small-world networks have a high local clus-
tering coefficient and a low average path length. 
Many scholarly networks (e.g., coauthor and paper-
citation networks) have small-world properties. 

Network Analysis
Many different network analysis approaches exist 
(see page 178, References & Credits).

Node and Edge Properties
Major node properties comprise node degree and 
reachability (e.g., as measured by betweenness  

centrality). Major edge properties include durability 
(how long they last), reciprocity (whether a relation-
ship is mutual), intensity (whether edges are weak 
or strong), and quality (reliability or certainty).

Clustering
Clustering of network graphs (also called com-
munity detection or graph partitioning) is used 
to identify clusters of nodes that maximize both 
within-group homogeneity and cross-group het-
erogeneity (see example below). When clustering 
networks, it is important to note that clusters have  
a high internal density of links, whereas the number 
of links between clusters is comparatively low. 

Backbone Identification
Many real-world networks are dense, which means 
there is a high ratio of the sum of all existing edges 
to the sum of all potential edges (i.e., when all 
nodes are interlinked). That makes it difficult to 
identify main “traffic highways.” Backbone iden-
tification algorithms use node, link, or network 
attributes to identify those parts of a network that 
handle the major traffic and/or have the highest-
speed transmission paths. The algorithms identify  
and delete superfluous edges, keep the highest 
weight edges per node, or calculate the minimum 
spanning tree (see the bold edges in the example on 
page 63, lower-right).

Network Studies— 
“With Whom”    
Network analysis and visualization techniques answer “with whom” questions, 
such as “Who collaborates, likes, or competes with whom?” When using network 
science approaches, the first step is to represent data by using nodes and edges. 
Nodes may have diverse attributes; edges may have labels, weight (e.g., to signify 
similarity or strength), and direction. Next, network analysis can be applied to 
identify clusters of similar nodes or backbones over which major traffic flows. In 
the process of visualizing a network, nodes, edges, and attributes must be mapped 
to graphic symbol types (page 32) and their graphic variable types (page 34).

Network: Any thing reticulated or decussated, at equal distances, with interstices between 
the intersections.
Samuel Johnson
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U.S. Senate Voting Similarity Networks, 1975–2012
Using U.S. Senate voting data from 1975 to 2012, this timeline by James Moody and Peter Mucha shows  
the increasing political polarization in America. Over time, fewer and fewer senators occupy a middle ground 
outside of their party’s camp.

Quantifying Social Group Evolution
Gergely Palla and colleagues studied coauthor and phone-call “collaboration events.” Shown are coauthorship 
events extracted from publications in the arXiv e-Print condensed matter archive, published over 142 months by 
over 30,000 authors. The stacked bar graphs show community composition per time step. Four types of author 
nodes are distinguished: those who joined in a previous time step (yellow), current newcomers (green), those 
who joined previously but will leave in the next time step (orange), and those who joined for this one time step 
only (purple). Collectively, the number of all nodes is represented by bar height. 

Shown at left is the evolution of three communities:  
(a) small and stationary; (b) small and nonstationary; 
and (c) large and stationary. Shown at right is (d) a large, 
nonstationary community and (e) network structures for 
two time steps.

Kapitalverflechtungen in Deutschland 
This network visualization by Lothar Krempel of the Max Planck 
Society in Germany shows the evolving network of leading companies 
in Germany. Yellow nodes signify banking and insurance companies;  
red nodes signify industrial companies (e.g., airline, automotive, and 
manufacturing firms). Node size denotes the volume of shared link-
ages. Yellow lines are used to link financial companies; red lines, 
industrial firms; and orange lines, financial companies to industrial 
firms. It reveals how during that time frame a drastic reduction was 
observed in the number and volume of linkages.

The Risk Interconnection Map, 2013
The World Economic Forum conducted a survey that asked experts to identify a minimum of three and a  
maximum of ten connections between major risks. The resulting network includes 529 paired connections.  
More connected risks 
are closer to the center, 
whereas weakly con-
nected risks are further 
out. The strengths 
of the lines depend 
on how many people 
selected that particular 
combination.

1998
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a

b
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Tree Layout
Many data sets, such as hierarchies (e.g., file sys-
tems, organizational charts), branching processes 
(e.g., genealogy, phylogenetic trees), and decision 
processes (e.g., search trees), have a tree structure. 
When depicting a hierarchy or tree, it is important 
to show the number of children per node, the tree 
depth (i.e., the number of edges from the root node 
to the leaf nodes), and the overall tree size. 

Tree View
Trees can be represented as lists of tree node labels 
interconnected by curved lines (see examples on page 
31 and page 57, Is Facebook-Is Twitter Phrase Graph).   

Dendrogram
Tree structures can also be represented by dendro-
grams, which may be displayed vertically or hori-
zontally and may be rectangular (see below-left) or 
slanted (see below-right). The Timeline of 60 Years 
of Anthrax Research Literature crossmap (Atlas of 
Science, pages 94–97) uses a dendrogram to depict 
the hierarchical clustering of topics. 

   

Radial Tree
A radial tree places all nodes in concentric circles, 
which are focused in the center of the screen. The 
nodes are evenly distributed, and the branches of 
the tree do not overlap. Shown below is the network 
of marriage and business ties of elite fifteenth-cen-
tury Florentine families. The layout focuses on the 
Medici family, which had a uniquely central place 
in the network. Other families are placed in three 
concentric circles according to the number of links 
needed to reach the center node. Pucci is uncon-
nected; see force-directed layout of the very same 
network on page 27, lower-right.

Link Tree
Link trees place the root node in the middle of a 
circle and intermediate and leaf nodes in concentric  
circles (see the tree ahead, extracted from the Tree of 
Life phylogeny on page 124).

Balloon Tree
A balloon tree places child nodes in concentric 
circles around their parent nodes. Node size is 
adjusted as needed to reduce visual clutter. The 
graph below shows the directory structure of the 
Sci2 Tool, which was used to generate many of 
the network visualizations featured in this spread. 
The main directory can be seen in the middle; it is 
linked to labeled subdirectories, which are further 
linked to sub-subdirectories. 

Enclosure Trees
Enclosure trees (also called circle packings) show 
the nesting of nodes using ellipsoids (see below).

Mosaic Graph
Mosaic graphs were used as early as 1874 to repre-
sent contingency tables. They are a combination  
of 100 percent stacked column graphs and 100 
percent stacked bar graphs (see page 46, Statistical 
Visualization Types), which make groupings and 
relative sizes visible. 

Treemap 
Treemaps extend mosaic graphs to represent  
deeper tree structures. They are a space-filling  
form of enclosure trees. Given an area, they use  
a space-filling recursive subdivision to lay out a 
tree structure without producing holes or over-
laps (see the example below and also the Map of 
the Market in Atlas of Science, page 200). Area sizes 
may correspond to the attributes of the subtrees 
they represent. The same area size can have differ-
ent manifestations in terms of aspect ratio. Areas 
may be labeled, color-coded, and shaded (see page 
34, Graphic Variable Types). Originally developed 
for rectangular areas, treemaps can also be gener-
ated for circular or arbitrarily-shaped areas using 
Voronoi tessellations (see page 45, All of Inflation’s 
Little Parts).

Network Layouts
Many different types of network layouts exist. Some 
are deterministic (i.e., each run of an algorithm 
results in the same layout); others are nondetermin-
istic (i.e., running an algorithm on the same data 
twice tends to result in different layouts). Some 
have a well-defined reference system (e.g., nodes are 
sorted and plotted according to a given attribute  
value). Other layouts optimize node distances 
according to similarity relationships between nodes 
while minimizing edge crossings.

Adjacency Matrix
An adjacency matrix (also called a matrix diagram; a 
reorderable matrix; or a sociomatrix in social network 
analysis) represents which nodes in a network are 
adjacent to other nodes. It is a matrix with rows and 
columns labeled by nodes and with each cell repre-
senting the value of a dyadic variable or link. Values 
in the diagonal denote self-links. For an undirected 
graph, the adjacency matrix is symmetric (i.e., it is 
sufficient to display only values above or below the 
diagonal, also called the upper or lower triangle; see 

Network  
Visualization Types      
Network visualization algorithms should be selected according to layout optimal-
ity criteria. These include the visibility of all nodes, their links, and their labels; 
the countability of every node’s degree; the ability of every link to be followed from 
source to destination; minimal numbers of link crossings; links having more or 
less the same length; large angles between incident or crossing lines; observable 
outliers, clusters (subnetworks), and backbones; and easy navigation/interaction. 
Furthermore, in a given sequence of networks (e.g., when animating change over 
time) the layout should ease comparison with respect to the layout of the previous 
network in the sequence. Data-driven criteria comprising layout distances between 
node pairs should reflect the similarity/distance values between those node pairs; 
variations in node density should reflect varying structural network cohesion; and 
geometric symmetries should reflect structural symmetries. Note that in network 
graphs, however, empty space does not signify the absence of phenomena.
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page 49, In Investing, It’s When You Start and When 
you Finish).

The layout is deterministic and easy to read. 
The matrix rows and columns may be reordered to 
improve legibility. Blockmodeling reorders the matrix 
so that the elements of a block are made contiguous 
(i.e., cohesive groups form contiguous intervals); a 
special case is that of the partition of a network in  
a cohesive core and a loosely connected periphery.

Different graphic symbol types (page 32)  
and their graphic variable types (page 34) can be 
used to encode additional link attribute values. For 
example, in a paper-citation adjacency matrix that 
shows inter-institution citations and represents the 
number of citations via height, highly cited and 
citing institutions are easily identified as vertical 
and horizontal bands. Similarly, the large number 
of self-citations (the diagonal) is easily spotted.

Arc Graph
See Arc Graph (page 59).

Circular Graph
Circular layouts place all nodes in a circle, typically 
with spacing that is equidistant or driven by data 
(e.g., more similar nodes might be in closer proxim-
ity). To help find nodes and reveal structure, nodes 
can be sorted by node attributes (e.g., alphabetically 
for labels or numerically by quantitative attribute  
values). Node and link attributes can be represented 
via different graphic symbol types (page 32) and 
their graphic variable types (page 34). Examples 
include Europe’s Who Owes What to Whom (page 10, 
lower-right); the Skitter Internet Map (page 53); and 
Inter-Institutional Collaboration Explorer (page 61). 

Circular layouts can also be used to visualize 
hierarchical networks. In the coauthor network 
for Eugene Garfield (see below), all author nodes 
are placed on a circle and connected by coauthor 
links that run through the circle’s interior. Edge 
bundling was applied to improve the legibility of 

links (see Atlas of Science, page 161 on Flow Maps). 
The colored arcs indicate how author nodes cluster 
hierarchically according to Blondel community 
detection (page 60, Clustering). 

Hive Graph
Hive graphs (also called hive plots) resemble paral-
lel coordinate graphs (page 47) but use a radial ref-
erence system to place nodes on axes according  
to their attribute values. Line, ribbon, and stacked 
ribbon hive graphs are shown below. 

In circular hive graphs, each of the axes supports 
two graphs (on either side). The three axis-line 
graph below depicts a set of Scholars who have 
Publications or Funding Awards and how these 
Publications acknowledge the Funding Awards. 
Additional node and edge attributes (e.g., color or 
size) can be used to encode attribute values.

Node-Link Graph
A node-link graph (also called a network diagram,  
structure plot, or sociogram) uses nodes and edges 
to represent a network. Nodes and edges may have 
additional attribute values that can be encoded 
using graphic variable types (page 34). Network 
layout may be random, circular, orthogonal (as in 
subway maps, see page 55), hierarchical, sorted 
by time (see the HistCite Visualization of DNA 
Development in Atlas of Science, pages 120–123), 
sorted by node properties (e.g., node degree or 
betweenness centrality; see circular graph on left), 
radial (see Radial Tree on opposite page), or force 
directed. The latter places nodes according to their 

similarities or the distances between them, aiming 
to minimize edge crossings while still maintaining 
their relative positions. Most force-directed layout 
algorithms aim to reduce the inherent stress, but 
they are nondeterministic (i.e., each layout results in 
a slightly different solution with a similar placement 
of nodes; see different layouts of the Florentine net-
work below). 

When working with large networks, it is beneficial 
to extract the most important nodes and edges and to 
identify and visually highlight important “landmark” 
nodes, subnetwork communities, and backbones. 

Sankey Graph
Sankey graphs (also called Sankey diagrams) show 
the flow of resources between nodes in a network 
with line width representing flow magnitude (page 
49). Like flow maps (page 51) and Alluvial graphs 
(page 59), Sankey graphs bundle lines to reduce 
visual clutter. Sankey graphs differ from Alluvial 
graphs in that they ignore temporal ordering.

Bimodal Graph
Bimodal network graphs (also called two-mode 
networks) contain two types of nodes and are  
commonly represented by two (sorted) lists, which 
are interconnected by linkages. For example, the 
Scholars and their Publications shown in the  
circular hive graphs on left can also be depicted  
in the bimodal network graph below.

Conceptual Drawings
Large-scale networks are commonly composed of 
one giant, weakly connected component and other 
disconnected components. The core-periphery 
structure of the giant component resembles a bow 
tie. The original drawing from 2000 shown below, 
by Andrei Broder and colleagues, identified that the 

World Wide Web has about 44 million IN nodes, 
56 million nodes in the strongly connected com-
ponent (SSC), and 44 million OUT nodes. One 
can pass from any node of IN, through SCC, to 
any node of OUT. Hanging from IN and OUT are 
Tendrils containing nodes that are reachable from 
portions of IN or that can reach portions of OUT 
without passage through SCC. Tubes refer to pas-
sages from a portion of IN to a portion of OUT 
without traversing SCC.

Network Overlays 
Network overlay maps (also called substance-based 
layouts) overlay networks on existing reference  
systems, such as graphs (see page 59, Arc Graph), 
geospatial maps (see page 19, right), topic maps  
(see Taxonomy Visualization of Patent Data in  
Atlas of Science, pages 132–135), or images (e.g.,  
a photograph of a brain cross-section with names 
of neuroscience authors in the brain sections they 
study and interlinked by coauthor relations or a  
satellite image in which the names of key institu-
tions are placed and linked). They can also be used 
to highlight the backbone, i.e., major structure of 
a graph (see below). Using interactivity, it becomes 
possible to refocus on different nodes via zoom and 
selection operations (page 68). 
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Types of Dynamics
Dynamics may come from changes in data variable 
values, as well as from changes in the types and 
numbers of measured or derived data values, vari-
ables, or linkages. In addition, reference systems may 
evolve. Four types of dynamics are discussed below. 

Data Values
Most data variable values examined in S&T studies 
change as time progresses. Examples are the num-
ber of papers per authors, the number of citations 
per paper, or the number of faculty at a university.  
Over time, data values may increase beyond expec-
tation, making an adjustment of the reference  
system necessary. For example, in a timeline graph, 
the time axis may need to be expanded or its scale 
changed to display all the values that come into 
existence over time (see Reference Systems section). 

Data Variables
New data sets and updated data formats come into 
existence on a daily basis. The alignment of data 
formats (or taxonomies, classification systems, 
ontologies) that changed over time can be time  
consuming or even impossible. Yet, the availability 
of a more precise time stamp or geolocation, unique 
author and institution identifiers, and/or linkages 
to other data sets is likely not only to increase the 
quality of existing visualizations but also to make 
novel analyses and visualizations possible. 

Data Records and Linkages
As time passes, new data records and linkages are 
published (e.g., new papers are published or new 
coauthorship relations develop). This raises the 

question of whether they should be visualized  
separately or cumulatively for each time slice, or  
if a sliding time window should be used (see page 
48, Time Slicing).

Reference Systems
Reference systems may need to be updated in 
response to increases in data values (e.g., a highly 
cited paper may require extending the data range of 
a graph). Data density may rise to the point where 
too much occlusion renders the visualization illeg-
ible. Applying alternative analysis algorithms may 
then be required to extract and highlight key struc-
tures and trends. In addition, the reference system 
may need to be distorted to make more space for 
densely populated areas. Geospatial maps may 
evolve in response to external events (e.g., see page 
16, Political Borders of Europe from 1519 to 2006). The 
map on this page shows the substantial increase of 
Boston’s land area and change in shoreline due to 
landmaking projects between 1630 (dark green) and 
1999. The more recent the changes are, the brighter 
the colors become. Land added from 1950 to 1995 
is shown in bright yellow. 

Network graphs, when used as reference systems 
for multiple time frames, should correctly represent 
the structure that is inherent in the data. However, 
maps from consecutive time frames should 
provide, as much as possible, a “stable reference 
framework”—a nontrivial goal, because network 
layouts tend to change drastically over time.

Presentation Types
The preceeding four different types of dynamics 
can be presented using four general approaches, 

effectively generating a four-by-four matrix. 
Combinations of types are possible.

One Static Image
Static images (e.g., those printed in newspapers or 
scientific journals) are a common format to share 
visualizations (see page 70, Device Options, for 
the advantages and disadvantages of using this 
format). Temporal graphs are used to show chang-
ing properties or derivative statistics (see page 50, 
Temporal Visualization Types). If location data 
is two-dimensional, then a simple arrow or trail 
can be used to show change over time (see the 
Gapminder Visualization on the opposite page as 
well as Hurricanes & Tropical Storms—Locations 
and Intensities since 1851 in Atlas of Forecasts). 
Proportional symbol encoding can also be used, for 
instance, to show the amount of time a user is idle 
in the virtual world (see idle circles in Virtual World 
User Activity on opposite page). 

Multiple Static Images
Dynamic change can be represented using multiple 
static images; see evolving activity patterns and flow 
and network overlays in the following geospatial 
maps: Europe Raw Cotton Imports in 1858, 1864 and 
1865 (page 80); Mobile Landscapes: Using Location 
Data from Cell Phones for Urban Analysis (page 108); 
and Literary Empires: Mapping Temporal and Spatial 
Settings of Victorian Poetry (page 136). Alternatively, 
evolving networks (see Maps of Science: Forecasting 
Large Trends in Science in Atlas of Science, pages 
170–173) or small multiple displays (page 66) can 
be used.

Different visualization panels are typically 
arranged in proper (temporal) sequence: from left 

to right or from top to bottom. Visual pathways 
may be suggested by using arrows or narratives. If 
the visualizations share a common reference system 
and the same mapping of data variables to graphic 
symbol types (page 32) and graphic variable types 
(page 34), then one legend suffices; if not, then 
multiple legends are needed. 

Animations 
The rapid display of any sequence of images can 
be used to create an illusion of continuous move-
ment known as animation. When combined with 
continuously updated legends and accompanied 
by text, this can be an effective way to communi-
cate dynamic data. Most animations can be started, 
stopped, fast-forwarded, or rewound interactively. 
They may use either a fixed or evolving reference 
system, as discussed below.

Fixed Reference System
An animation that uses a static reference system is 
comparable to a flipbook of small multiple displays. 
Usually, the animation frames are generated by first 
mapping the full data set, then saving the record/
node positions, and finally using those positions for 
all earlier time frames. An example are the four sci-
ence map overlays in TTURC NIH Funding Trends 
on opposite page. Using the UCSD Map of Science 
and Classification System, publications from four 
cumulative time frames were overlaid to communi-
cate the topical focus and number of TTURC  
publications. Care must be taken to ensure that  
the visual encoding, specifically the size-coding  
of graphic symbol types, does not extend beyond 
the available canvas.

Evolving Reference System
Some animations, such as network layouts,  
readjust the reference system so that it is correct  
or optimal for each time point. Examples are 
the evolving coauthor networks in TTURC NIH 
Funding Trends (opposite page) and the evolv-
ing journal citation maps in The Emergence of 
Nanoscience & Technology (page 138). Whereas 
geospatial maps evolve due to external events—
such as wars that change country boundaries or 
droughts that dry up lakes—changes in network 
structures are typically data-driven. 

Interactive Visualizations 
Dynamic visualizations can be explored via  
desktop or online interfaces that support data 
exploration (see page 26, Interaction Types and 
page 68, Interaction). Different reference systems 
and views of the data may be selected, and over-
view, filter, and details-on-demand functionality 
may be provided.

Studying Dynamics
Dynamic analysis and visualization can be applied to detect change over time, 
but change in other attribute values can be studied as well. When using data 
from longer time spans, evolving data formats may have to be harmonized. Major 
changes in the number of data records per time slice may require adjustments 
in parameter values to maintain legibility. Note that change may also affect the 
target user group and their insight needs (see page 40, User Needs Acquisition). 
Plus, tools and workflows change over time. This spread features different types 
of dynamics together with dynamic visualizations that communicate change via 
modification of the reference system as well as evolving data overlays, graphic 
symbol types (page 32), and/or graphic variable types (page 34).

May you have the hindsight to know where you’ve been, the foresight to know where 
you are going, and the insight to know when you have gone too far.
Irish Blessing
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Gapminder Visualization
Hans Rosling’s Gapminder visualizations aim to communicate socioeconomic data to a general audience (see also 
page 71, 200 Countries, 200 Years, 4 Minutes). The below Children per Woman over Income per Person scatter 
plot maps countries—represented by a circle that is size-coded by Total Population—for the years 1930 to 2012. 

Virtual World 
User Activity
Shown here is a square educa-
tional world from the Active 
World universe of virtual 
worlds. Buildings are cyan; 
user trails are color-coded by 
time. Stationary users are rep-
resented by circles that grow in 
size as idle time increases.

TTURC NIH Funding Trends
This study examined the impact of different funding strategies by the National Institutes of Health (NIH) 
comparing transdisciplinary tobacco-use research centers (TTURC) versus traditional investigator-initiated 
research grants (R01) in tobacco-use research during the same period. The TTURC coauthor network (top four 
networks) has a large component that is densely connected, supporting efficient diffusion of information and 

expertise. R01 networks (not shown) are sparsely connected or not at all. TTURC research publications (bottom 
science maps) quickly cover all major areas of science, whereas comparable R01 publications (not shown) take 
longer to publish in certain areas and fail to reach others.
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Multiple Views 
Many old maps use multiple panels to tell a  
comprehensive and often global story (see Heights  
of the Principal Mountains in the World, Lengths of the 
Principal Rivers in the World and Zoological Geography 
on the opposite page). The spatial attributes of real-
world objects (e.g., the concrete positions of moun-
tains or the trajectories of rivers) can be distorted to 
make specific properties easier to read and compare 
(e.g., the height of mountains or the length of rivers).

Computer-generated graphs may plot data  
points and their distributions in one visualization.  
For example, scatter plots may be combined with 
stripe graphs to create so-called rug plots (page 
47, lower-left). The Ecological Footprint (page 90) 
features a world map and several graphs to commu-
nicate consumption and pollution for different  
countries. Interactive online visualizations feature 
multiple windows that provide different views 
of scholarly data. For instance, Knowledge 

Cartography (page 134) provides a timeline, a 
geographic map, a thematic map of disciplines, and 
a map of collaborations. For a discussion of tightly 
coupled windows that support interactive data 
exploration, see page 68, Interaction.

Small Multiples
Small multiples are sets of thumbnail-sized graphics 
of multivariate data that are frequently used in com-
parisons. They use the same measures and scale and 
may be used in a tabular display, a graph, a map, or 
any other visualization type (page 30). An exam-
ple is the line graph in the lower-left from Harris’s 
Information Graphics book, which shows sales from 
August to February using five-year averages. For 
each month, the values of all five years are plotted 
using a miniature bar graph. The map on the right 
of it shows small multiple graphs on a map. The Baby 
Name Wizard (page 69) and the table in the top-right 
show miniature maps in a row. 

Tabular Display
Tables can be used to effectively organize multiple 
visualizations of different data sets, using a  
combination of words, numbers, and visualizations 
as a means of comparison. The example above, also 
taken from Information Graphics, shows the pro-
files of three companies for five years (1992–1996). 
Text and numbers, as well as bar graphs, geospa-
tial maps, and arrows indicating general trends, 
are employed to render a holistic picture. Tables of 
any size and any visualization types (page 30) may 
be used.

Matrix Display
Matrix displays plot visualizations of multivariate  
data in a tabular or matrix-like fashion. Each matrix 
cell displays one combination of attribute elements 
in the given rows and columns. Shown on the left 
is a four-by-two matrix that shows the numerical 
correlations between age and salary (columns) and 
the number of papers, citations, funding dollars, 
and doctoral students for 20 faculty members in 
a fictional department. Correlations can be easily 
spotted (e.g., the positive correlation between age 
and citations due to the time it takes before publica-
tions accumulate citation counts). Outliers can be 
spotted as well (e.g., the red dot indicating a faculty 
member who, despite high age and salary, has a low 

number of citations, possibly due to extensive teach-
ing or service duties).   

Multilevel Display
Many visualizations are composed of multiple data 
layers. Simultaneously showing each of the separate 
layers can help to improve legibility of the single 
layers and their overall composition. Interactive 
visualizations (page 68) commonly support the 
selection and display of specific layers (e.g., publi-
cations, patents, and/or funding data overlaid on 
a geospatial or science map), making it possible to 
focus on and compare a smaller subset of the data. 
The two visualizations discussed in the lower part 
of page 67 feature multiple interactive, coupled 
windows (see page 178, References & Credits for 
links to websites).

Exploded Diagram
Exploded diagrams are common in engineering 
and anatomical drawings. They show how different 
parts (e.g., of an information visualization) relate 
to one another, the underlying data, or the planned 
decision making. They may also reveal the design 
process or assembly. 

Combination 
Most data sets are complex, and different types of analysis and visualization  
may be required to make sense of them. Presenting the same data using different  
reference systems, such as temporal, geospatial, and topic space, that are coupled 
(i.e., selecting a data record in one view highlights the same record in all other 
views) makes it possible to examine different aspects simultaneously. Showing 
different data in the same reference system, such as by using population pyramids 
or small multiples, eases comparisons. Multilayer visualizations can be employed 
to provide focus and context or to support navigation across multiple levels of 
abstraction—from micro to macro.

The whole is greater than the sum of its parts.
Aristotle
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Heights of the Principal Mountains in the World, Lengths of the 
Principal Rivers in the World
This map from 1846 shows the heights and lengths, respectively, of the world’s most prominent mountains and rivers 
(see high-resolution version of this map at http://scimaps.org/atlas2).

Zoological Geography
This 1856 lithograph from Alexander Keith Johnston’s Physical Atlas shows different types of birds of the  
“new” and “old” worlds (on the left and right, respectively). Districts and migration paths are color-coded by 
type. The perpendicular distribution of birds in the Alps is also given in the lower part of the map.

U.S. Healthcare Reform
This map by Persistent Systems (via their ShareInsights platform) shows sentiments extracted from tweets con-
cerning the U.S. healthcare reform. Sentiments are color-coded to signify Pro (green), Anti (red), and Neutral 
(yellow) expressions. They are overlaid on a geospatial map, with pie chart glyphs indicating the sentiment for 
each state and a timeline graph (at top) showing the number of tweets over time. Bar graphs chart Topics  
covered (at left); major Websites/Influences (at bottom); and Most talked about personalities (at right). 

Inter-Institutional Collaboration Explorer
Developed by Nick Benik and Griffin Weber at Harvard, this interactive explorer maps Inter-Institutional 
Collaboration Explorer from 1987 to 2010. The total of collaborative publications produced by each of 11 U.S. 
institutions appears in a list on the left; the collaborative  
patterns of those institutions are mapped in a circle on the 
right. Each inner colored band of the circle connects two 
institutions (represented by outer arcs); the band’s width 
signifies the sum of their collaborations. Viewers may 
click on any arc to display only the data for that  
institution, including a timeline of collaborations  
shown in lower-right.
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Interaction Types
Different deployment (e.g., print versus digital) 
supports different types of interactions that are 
appropriate for answering specific questions. Two-
dimensional or three-dimensional printouts facili-
tate the detailed examination of static visualizations 
at a supremely high resolution. Digital devices  
support animations and interactivity but typically 
at a lower resolution (see page 70, Device Options). 
Although interactivity is particularly beneficial  
during data exploration, it can also be highly  
effective during data communication (see page  
71, 200 Countries, 200 Years, 4 Minutes).

User interactions can be grouped according  
to the transformation(s) they effect: Data 
Transformations that process and analyze raw data 
and compute data formats that can be visualized; 
Visualization Transformations that define the 
visual encoding of data records; and Visual View 
Transformations that manipulate the final views  
of the data. All three are discussed in this section.

Data Transformations
Data slicing (e.g., by time), filtering, and query-
ing allow users to quickly find and access relevant 
information. Diverse data preprocessing and  
analysis methods, as discussed on pages 44–60, 
help extract important patterns and trends. 
Filtering, resampling, aggregation, or dimensional-
ity reduction are commonly used to reduce  
visual clutter. 

Visualization Transformations
These transformations refer to the decisions made 
about the reference system (page 24), projection or 
distortion, and data overlay that should be used. 
Designing the data overlay, specifically, requires 
deciding which data variables should be mapped 
to which visual elements (see page 32, Graphic 
Symbol Types, and page 34, Graphic Variable 
Types). The strong interdependence between data 
analysis and visualization is worth noting, as deriva-
tive data variables (e.g., node degree, bursts of activity, 
clusters, or backbones) can only be used during visual 
mapping if they have been previously computed. 

To achieve higher update speeds when manipu-
lating large data sets, data records can be rendered 
initially either at a lower resolution (e.g., as wire-
frame models) or without textual labels. Only 
truly important items might be rendered on the 
screen while computationally expensive queries are 
performed. Users may also be able to select which 
labels, gridlines, and background imagery should  
be visible during interactive exploration.

Visual View Manipulations 
The display of millions of data records often leads 
to visual clutter (i.e., data visualizations with many 
overlapping or occluding data records that are difficult 
if not impossible to read). Manipulations such as over-
view, (semantic) zoom, search, filter, and details on 
demand are applied to visualize multiple scales of time 
and geospatial, semantic, and network space. Ideally, 
different levels of resolution have the same informa-

tion density. Rapid, incremental, and reversible actions 
combined with immediate and continuous feedback 
help to reduce errors while encouraging exploration.

Overview
Just as there is no better way to first see a new city 
than from the top of its highest tower or nearby 
mountain, the most desirable way to first see a  
data set is from above, before zooming in to  
examine intricacies. 

Zoom
Zoomable user interfaces empower users to explore 
very large information spaces. Zooming coupled 
with damping makes it possible to navigate effec-
tively by starting to zoom slowly before accelerat-
ing and then finally slowing down gracefully when 
approaching the desired destination.

Filter
Diverse interface elements have been developed 
to support dynamic queries. Among them are 
range sliders (a variant of scroll bars), which sup-
port dynamic pruning from both sides (see the 
London Travel-Time Map on the opposite page), and 
alphasliders, which support rapid, serial, and visual 
filtering by reducing the range of alphanumerically 
sorted data that is displayed.

Visualization tabs support navigation between 
multiple windows. For example, The Baby Name 
Wizard on the opposite page contains tabs for a 
timeline and geospatial maps.

Detail on Demand
Being able to access raw data is essential for many 
applications. By clicking on a graphic symbol, a user 
can bring up a listing of all the data records it rep-
resents. Selecting data records would then bring up 
summary information or lead to the raw data that is 
being locally hosted or retrieved from third parties. 
This focus and context support is important, because 
it helps the user to make decisions regarding detailed 
data records in the context of a larger data set. 

Search
Visual search for a specific data record using the 
naked human eye can be extremely time-consuming. 
In contrast, automatic search supports the rapid 
selection of data records based on either primary  
or derived data variables (e.g., name or node  
degree, respectively).

Sorting
Sorting by value or category is especially helpful 
when trying to understand minimum and maxi-
mum values or the general distribution of a data set. 
Missing or top n values can be easily identified, and 
thresholds can be applied.

Extraction
Many users need to run further analyses of the 
final set(s) of data records. That is, they need a 
way to save these records for further processing. 
Frequently, only a subset of the data variables is 
needed (i.e., it is desirable to support the download 
of custom data formats). 

History
Users will be more likely to explore novel workflows 
if they can “undo” previous actions. Log files of user 
actions can be used to share and rerun workflows in 
support of result replications; they are also valuable 
for submitting bug reports.

Information Density 
When supporting different interaction types, it is 
important to provide an appropriate information 
density. The process of determining the best infor-
mation density depends strongly on data, analyses, 
and user characteristics. Typically, interactive infor-
mation visualizations simultaneously show results 
from a lower bound of 500 data records to an upper 
bound of 100,000 data records. Homogeneous data 
can be more densely represented than highly multi-
dimensional, loosely correlated data. Important data 
patterns may only be evident within specific scale 
ranges. Therefore, visualization designers need to 
be sensitive to relationships between data sampling, 
analysis, and visual resolution. Casual users (who 
use a visualization infrequently and for a short time) 
need a simple, less dense visualization, as compared 
to expert analysts (who may use the same visualiza-
tion extensively on a fairly regular basis).

Interaction Support
Interacting with large-scale information spaces can 
easily lead to a feeling of “being lost.” 

Three major paradigms are used to support navi-
gation: (1) spatial navigation that mimics our experi-
ences in the physical world; (2) semantic navigation, 
which is driven by semantic relationships or under-
lying logic; and (3) social navigation, which takes 
advantage of the behavior of like-minded people.

In addition, there exist three forms of user guid-
ance: (1) manipulation support (e.g., constraining 
user manipulation by having objects snap to a grid, or 
having objects repel each other to avoid obfuscation); 
(2) coordination support (e.g., using tightly coupled 
windows—also called tightly coordinated windows 
or brushing and linking—to identify a set of data 
records in one window and see them highlighted in 
all other views of the same data set); and (3) self-
evaluation support (e.g., status displays, commonly 
used in computer games, to communicate users’ 
progress and accuracy during data exploration).

Interaction
Many data sets are too large to fit on one screen or printout. Interaction permits 
the user to first gain a global overview of all the data and then to zoom in to that 
data, search for and filter out relevant records, and/or retrieve details on demand. 
The structure and dynamics of data can be explored at multiple orders of magni-
tude. In principle, any part of the analysis workflow and any layer of the visual-
ization design can be modified via user input. For example, users can select the 
(real-time) data sets that are shown; the preprocessing, analysis, modeling, or 
layout that is performed; the specific data that is on display; the visual encoding  
of different data variables; the aggregation and clustering that is applied and 
visualized; the combination of visual views that are shown; or the legend that is 
presented, including the way it was compiled. 

Graphing data needs to be iterative because we often do not know what to expect of the 
data: A graph can help discover unknown aspects of the data, and once the unknown is 
known, we frequently find ourselves formulating new questions about the data.
William S. Cleveland
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GRIDL
The GRaphical Interface for Digital Libraries (GRIDL) visualization, introduced on page 58, is highly interactive. At 
the highest zoom level, patterns and distributions for 100 to 10,000 records can be easily recognized. Selecting a table 
cell brings up a listing of all relevant documents (see top-right). Any document can be selected to explore document 
details (see bottom-right). The mapping of data attributes to axes as well as to size and color can be readily changed. 
 

The Baby Name Wizard 
This online service lets anyone explore the prevalence of baby names in each U.S. state over time by simply 
entering a name (or a sequence of letters) and then selecting the Map or Timeline tab. Running a query for 
Andrew and selecting the Map tab results in the visualization below: a small multiple display of U.S. maps that 
show the steadily increasing number of male babies named Andrew per state.

London Travel-Time Map
This interactive map by mySociety lets users specify minimum and maximum travel times in London to help 
them explore the accessibility of different areas from the Department for Transport in Pimlico if they were to 
start their trip at 9:00 a.m. Orange represents the shortest travel times, of 0 to 10 minutes; dark green represents 
the longest travel times, of 40 to 50 minutes. The interactive version of the interface is shown at right.

Seesoft: A Tool for Visualizing Line Oriented Software Statistics
In 1992, Stephen G. Eick and colleagues at AT&T Bell Labs published a software visualization system that 
visualizes up to 50,000 lines of code simultaneously in support of discovery, project management, code tuning, 
and analysis of development methodologies. The highly interactive interface represents each line of code with a 
thin line color-coded by data variables of interest, such as age, programmer, and the purpose of the code. 
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Needs and Affordances
Different user groups have very different insight 
needs, learning objectives, or monitoring goals. A 
detailed understanding of user needs (see page 40, 
User Needs Acquisition) helps answer questions 
such as: Which human senses should be engaged, 
and in what way, to support effective navigation, 
access, manipulation, and insight making? Which 
information is best communicated via text, visual-
izations, audio, haptic feedback, or combinations 
thereof? Plus, what user input is necessary to effec-
tively steer data navigation and exploration? Highly 
sophisticated setups that are difficult to learn or 
maintain, or simply too innovative for their time 
(see Morton L. Heilig’s Sensorama on opposite page), 
tend not to succeed. Interfaces that utilize  
(or blend into) the fabric of their users’ daily lives 
and offer immediate tangible benefits are likely to 
have faster and higher adoption rates.

Device Properties
Different input devices (e.g., a camera or scanner) 
and output devices (e.g., a printer or screen) can 
vary greatly in terms of resolution, brightness,  
and color range. They may also support different 
viewing angles, update frequencies, and write/read 
different file formats. 

Resolution
The resolution of a camera, scanner, printer, or mon-
itor is commonly measured in dots per inch (DPI)—
the number of dots in a one-inch line. Pixel, short 
for picture element, is the smallest dot that a device 
can read or write. Voxel, or volume element, is the 

smallest volume that a device can read or write. In 
2014, the preferred values were 72 DPI for the web 
and 300 DPI for printouts. Laser printers support  
a resolution of up to 1200 DPI to support anti-
aliasing, different gray levels, and superacuities.

Smaller screens require more zooming and 
panning to view the same amount of information. 
Effective interaction design can help with navigat-
ing diverse windows, opening and closing palettes,  
or switching between detail and overview. 

File Size
The more pixels/voxels per inch, the higher the  
resolution, and the larger the file size. A photo 
taken with a 16:9 aspect ratio camera—at a resolu-
tion of 2981 x 1677 = 5,000,000 pixels or five mega-
pixels (MP)—can be printed in 300 DPI at a size 
of 9.9" x 5.6" (25.2 x 14.2 cm). It would require 2.5 
HD screens (each with a resolution of 1920 x 1080 
= 2,073,600 pixels) to be viewed in full resolution. 
Downsampling the image to 72 DPI web resolution 
reduces the file size by a factor of about 16.

File size is also affected by color depth and color 
mode. Color depth (also called bit depth) depends 
on the mode the image was captured in (8 bit, 16 
bit, or higher). Common color modes are gray-
scale, RGB, or CMYK. An RGB image has three 
channels (red, green blue), CMYK has four (cyan, 
magenta, yellow, black), and a grayscale image has 
one (black). In 8-bit RGB color mode, the file size 
of a 5 MP image is 14.3 MB; in the more common 
16-bit, it is 28.6 MB; and in 32-bit, it is 57.2 MB. 

Many sciences produce super-high-resolution 
images by combining multiple images. For example, 
the Photopic Sky Survey is a 5,000 megapixels (MP) 

photograph of the entire night sky, stitched together 
from 37,440 exposures—it would require 1,000 times 
more space to print or display than a 5 MP image.

Brightness
Paper printouts require illumination by external 
sources (e.g., the sun) to be seen. The brightness of 
digital displays is indicated in lumens, a photometric 
measure for the perceived brightness of a light source. 
A standard 100-watt incandescent light bulb emits 
approximately 1,700 lumens. Laptop and TV screens 
as well as data projectors have 500 to 12,000 lumens. 

Color
A color space is a mathematical model for describ-
ing color. Diverse color models exist that organize  
colors according to their properties. Examples 
include RGB (red, green, blue), which is an 
Additive Model used in computer displays; CMYK 
(cyan, magenta, yellow, black), a Subtractive Model 
widely used in printing (see below); and the use of 
HSV (hue, saturation, value; see page 35, Color).

Viewing Angle
The field of view is the angular extent of the 
observable world. Humans have an almost 
180-degree forward-facing field of view. Their 
binocular vision, which is important for stereo and 
depth perception, covers 140 degrees. A smaller 
distance to a screen or printout equals a larger field 
of view taken up by that visual. 

Handheld devices stimulate about 5 to 10 
percent of the visual field, whereas large display 
walls may cover the entire field of view.

Update Frequency
The update frequency (also called refresh rate) 
denotes the number of times per second that a 
display screen is redrawn. Higher update frequen-
cies decrease flickering, thereby reducing eyestrain. 
Standard computer displays use a 60 Hz refresh rate 
(i.e., the screen is refreshed 60 times per second). 
Stereo displays need to render a separate picture for 
each eye and require a frequency of at least 120 Hz. 
TV screens use 60 Hz (NTSC) and 50 Hz (PAL/
SECAM) frequencies.

Data Format
There are two main format types for storing images. 
Vector formats such as PostScript (PS) or Scalable 
Vector Graphics (SVG) store a geometric description 
that can be rendered at any size. Raster formats such 
as JPG, TIFF, GIF, BMP, and PNG store data as 
grids of pixels. Examples are shown below.

Device Options
Visualizations can be printed on paper or in three 
dimensions, projected onto screens, or displayed on 
handheld devices or in virtual reality setups. The 
advantages and disadvantages of different options 
are discussed ahead.

Printouts
Paper comes in different sizes, weights, surface 
textures, and colors. Paper printouts are cheap and 
fast (no boot-up time required); they are also easy 
to transport, deploy (no outlet needed), and anno-
tate (e.g., by using a pen). Prints offer the highest 
resolution [a map the size of a 4' x 6' (1.2 x 1.8 m) 
dining table in print quality can display 420 MP] 
and help to minimize changes in eye focusing and 
head or body movements. Plus, they can be easily 
explored by multiple users. Archival paper prints 
stored in a dry, dark room are likely to be readable 
in 500 years. 

Three-dimensional prints can be created manu-
ally (e.g., using same-size bricks to render three-
dimensional bar graphs) or by using 3D printers that 
create structures out of plastics, resins, and metals in 
different resolutions, using one or more colors.

Digital Displays
Computer, laptop, tablet, and phone displays come 
in different sizes and resolutions, with varied inter-
activity, at a wide range of prices. Online services 
such as Zoom.it or GigaPan.org support the shar-
ing of large visuals and their interactive explora-
tions via zooming and panning functions. In 2014, 
ultra high-resolution television displays support 33 
MP. If more pixels are needed, multiple displays 
or projectors can be combined into a tiled wall or 
globe (see the Giant Geo-Cosmos OLED Display and 
Indiana University’s Virtual Reality Theater on the 
opposite page).

Human-Computer Interface             
Various hardware and software combinations support a wide range of user input 
and computer output. They also have a wide range of price tags and can lead to 
vastly different user experiences. Large-size paper printouts are most affordable 
yet static. Mobile devices that are an integral part of users’ lives support real-time 
data access and interactivity. Larger audiences benefit from displays that are visible 
to many and potentially support multiuser interaction. Virtual reality setups that 
emulate a three-dimensional visual, audio, and haptic space, akin to our real-world 
environment, are expensive and often reserved for expert domain applications or 
gaming. Internet access and speed determine the feasibility of online services. This 
spread provides an overview of hardware and software properties and interface 
affordances that need to be taken into account when deploying visualizations.

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes.
Marcel Proust 
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Morton L. Heilig’s Sensorama 
Patented in 1962 by American cinematographer and inventor Morton L. Heilig, 
the Sensorama 3D movies featured stereo images, wide vision, motion, color, 
stereo sound, aromas, wind, and vibrations to provide full sensual vividness and 
dynamic vitality. 

Giant Geo-Cosmos OLED Display 
Dozens of Ingo Günther’s Worldprocessor Globe designs (see Atlas of Science, 
pages 140–163) come to new animated life accompanied with a data-driven 
soundtrack on the geo-cosmos display, the emblematic heart of the Museum of 
Emerging Science and Innovation in Tokyo, Japan. The 20' (6m) diameter display 
features 10,362 palm-sized, organic light-emitting diode (OLED) panels, for a 
total of more than 10 MP. 

200 Countries, 200 Years, 4 Minutes
This BBC documentary, featuring Hans Rosling, captures the development of 200 
countries over 200 years. Specifically, it uses effective visualizations, persuasive 
argumentation, and an innovative camera setup to communicate the immense 
changes over time in lifespan and in the income per person (GDP per capita) 
rates, adjusted for inflation and differences in cost of living (purchasing power) 
across countries.

Indiana University’s Virtual Reality Theater
Immersive environments such as this reconfigurable CAVE system make it  
possible to virtually experience product designs or architectural solutions before 
they exist physically. Shown here is an interactive walkthrough of a proposed  
furniture layout for an IT control room at Indiana University.

Standard user input comprises text input via 
keyboard, click and selection via mouse-like 
devices, audio input (e.g., voice recognition), and 
touch-sensitive surfaces. Touchscreen tables support 
the identification of multiple fingers (and users); 
cameras support recognition of gestures and  
eye movements. Handheld devices may have eye-
tracking, heart rate, temperature, and other sensors.

Stereo Displays
The exploration of 3D structures can benefit from 
stereoscopic displays such as 3D computer and TV 
screens. Devices such as the Responsive Workbench 
and ImmersaDesk use a horizontal screen to project 
stereoscopic images, which makes them well-suited 
for tasks that in the real world would be performed 
on a table. Multiple users wearing shutter glasses 
can view high-resolution, head-tracked images, and 
stereo sound. 

CAVE systems are multi-person theaters that 
use rear projection of images on all four walls, the 
floor, and the ceiling. Some can be reconfigured; 
that is, the position of walls can be modified, such 
as in Indiana University’s Virtual Reality Theater 
(see bottom-middle). Early CAVE Systems used 
two projectors with a resolution of 1024 x 768 pixels 
to illuminate each wall; printed in 300 DPI, that 
0.8 MP resolution produced a 3.8" x 2.9" (9.7 x 7.4 
cm) image—the size of half a postcard.

Illuminated Diagram Display
This display combines the high data density of large 
paper printouts with the flexibility of an interactive 
program driving a touch-panel display and two  
projectors that illuminate the maps (see bottom-
middle picture of setup on page 76 and Atlas of 
Science, pages 180–185). 

Augmented Reality and Wearables 
Hardware miniaturization and advanced software 
development support a deeper integration of physi-
cal and virtual worlds. Augmented reality refers to 
the embedding of virtual information in the physi-
cal world, using see-through displays or clever cam-
era setups (see the still image from Rosling’s BBC 
documentary 200 Countries, 200 Years, 4 Minutes 
on the bottom-right). Wearable (mobile) user inter-
faces may soon allow information to be available 
anytime, anywhere, as part of our clothing and the 
gadgets we carry. 
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Validation Criteria 
Visualizations are commonly optimized and evalu-
ated according to three qualities: function (utility, 
usability, effectiveness, and scalability), aesthet-
ics (quality and appeal), and integrity (accuracy 
and replicability); for details, see works by Edward 
Tufte, David McCandless, and Bradford W. Paley 
(page 178, References & Credits). Some metrics  
can be observed or computed (e.g., in terms of 
speed, accuracy, or scalability). Others (e.g., beauty 
or relevance) require expert evaluation.  

Function
A visualization should display the most important 
information in clear and accessible form. Relevant 
questions for consideration can be broken down into 
function-specific categories.

Utility
Does the visualization satisfy the technological, 
contextual, and business insight needs of the target 
audience? What is the decision-making value—
that is, which major insight does the visualization 
provide, and why does it matter? Does it inspire 
viewers to learn more or to act differently? Does it 
support asking questions, making future explora-
tions, or generating hypotheses? How generic is the 
solution? What range of questions can be answered? 
Do people continue to use it in practice? Do they 
buy it or purchase upgrades? Is the creator invited to 
continue producing similar visualizations? 

Usability
Is the visualization easy to read and use by the  
target audience? Is its purpose clear? Does it use  

a common yet sufficiently expressive reference  
system? Is the mapping, from data scale types  
to graphic variable types, easy to understand?  
Is the provided interactivity easy to use, and is  
it sufficient?

Effectiveness
For each visualization, one should clearly state the 
user needs and then show the rationale behind the 
selection of certain reference systems, metaphors, 
color-coding, interactivity design, etc. Questions 
to be addressed comprise: Is the display space used 
effectively? Is the number of data points and the 
data density appropriate? Is all relevant data visible,  
or are there occlusions? Are the key findings domi-
nantly represented? Is the given story told in a  
consistent fashion? Does it allow easy access to 
additionally needed data?

Scalability
Most visualizations work well at the micro and 
meso levels; few scale to the macro-level, big-data 
studies that have millions or even billions of data 
points. Does the visualization degrade gracefully as 
the amount of data increases (e.g., are data analysis 
techniques used to help derive insights from dense 
networks that are initially illegible or visually akin 
to spaghetti balls)? How responsive is the visualiza-
tion to user interaction?

Aesthetics
Visualizations need to attract the attention of  
viewers to communicate. Visual aesthetics (i.e., 
well-composed, high-quality data renderings)  
are important.

Design Quality
Visual aesthetics comprise design quality, the origi-
nality of the underlying idea, and international and/
or interdisciplinary appeal. Carefully selected and 
easy-to-read image compositions, color palettes, 
shapes, and forms help to improve quality. 

Appeal
Ideally, viewers will be attracted by a visualization 
and have fun interacting with it. The visualization 
will have even higher mass appeal if it has been fea-
tured in news channels, popular blogs, social media, 
on the cover of a major journal or magazine, or as 
part of a prominent museum exhibit.

Integrity
A visualization should present data in the most 
objective way. It should be generated using the most 
accurate and highest coverage data and the best 
methods available. All of these factors add to the 
creator’s credibility.

Accuracy
The quality of the data, analysis, and design is  
key for the creation of accurate visualizations.  
If uncertainty exists in either the data or in the 
analysis and visualization workflow, then it  
should be stated unambiguously. Subjective  
choices or manual data modifications need to be 
clearly documented.

Replicability
Any visualization should come with sufficient  
documentation to recreate it. Documentation 
should comprise information on the original data 
(including source and baseline statistics); details 
about how data was cleaned or preprocessed; the 
analysis and visualization algorithms that were 
applied; and the parameter values that were used. 
One should list all authors, ideally with brief 
information on their expertise and specific  
contributions, and mention all funders, as  
commercial interests are likely to influence  
visualization design and description. A detailed 
documentation of work will improve consistency 
and ease future studies.

Validation Methods
When designing visualizations, it is beneficial to 
validate results early and often. Different qualitative 
and quantitative methods exist to (obtrusively or 
nonobtrusively) evaluate visualizations. 

Field studies are employed to understand 
how users interact with a visualization or tool in 
the real world—with their own data and tasks. 
Longitudinal field studies work with users over 

extended periods of time. Field experiments design 
user tasks to simulate real analyses and recruit 
groups of users for one-on-one sessions that test the 
visualization or software (not the users), encour-
age thinking aloud, and record top usability issues. 
Both emphasize real-world context and learning 
through observation (not just opinion). 

User Studies 
User studies are commonly employed to evaluate 
or compare design alternatives. Evaluation metrics 
such as task-time completion and error counts shed 
light on the usability and effectiveness of visu-
alizations. Users may be asked to think aloud so 
that evaluators can capture their thought processes 
and insights. Eye-tracking devices help research-
ers understand how interactive visualizations guide 
users’ eyes as well as their navigation and processing 
of information spaces. Longitudinal studies (i.e., 
repeated observations over long periods of time) are 
used to study the adoption of novel visualizations 
among existing ones. 

Human (Expert) Validation
An open-ended protocol, a qualitative insight 
analysis, and an emphasis on domain relevance 
may all benefit the identification of those visualiza-
tion features that can help users achieve insight and 
those that may prove problematic—directly inform-
ing visualization refinement and improvement. For 
example, human experts may be asked to draw a 
domain map, and this map would then be compared 
to visualizations automatically constructed accord-
ing to domain data. Experts may also be consulted 
in classification and labeling studies, in which par-
ticipants are asked to freely explore given visual-
izations and then to identify major domains and 
prevalent topics (e.g., by drawing cluster boundaries 
around similar objects and assigning a label to each 
cluster). In utilization studies, participants use visu-
alizations to make sense of data, and the results are 
compared to those derived by automatic means. 

Controlled Experiments  
on Benchmark Tasks
For rigorously evaluating visualizations, many sci-
entific communities have compiled data reposito-
ries and synthetic data sets that support the given 
experiments. In general, benchmark tasks must be 
predefined by test administrators, and users must 
precisely follow specific instructions during the 
experiments. Each task has a definitive completion 
time that is fairly short (typically under one min-
ute), in support of a large number of task repeti-
tions. Each task has definitive answers that are used 

Validation and Interpretation            
There now exists a rich variety of algorithims, tools, and services that turn data into 
visualizations. While some are designed for use by experts, a growing number of 
easy-to-use tools is widely used by non-experts. Most datasets can be analyzed and 
visualized in many different ways. The majority of the possible algorithm and visual-
ization design combinations is incorrect or imperfect; only a select few combinations 
result in readable, informative, and actionable visualizations. This spread reviews 
the criteria and methods for validating (alternative) visualizations and for estimating 
their value for sound decision making. Examples of good and bad visualizations are 
used to illustrate common problems and potential solutions (see opposite page).

Human judgment without automated data mining is blind; automated data mining 
without human judgment is empty.
Colin Allen 
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to measure accuracy. Answers are often simple (e.g., 
multiple choice in support of objective mechanical 
or automated scoring). 

Crowdsourcing Evaluation
Amazon’s Mechanical Turk and similar platforms 
can be used to crowdsource evaluation (see page 
174, Democratizing Knowledge and Participation). 
For example, Jeffrey Heer and Michael Bostock 
crowd sourced graphical perception experiments 
by replicating prior studies of spatial encoding and 
luminance contrast; conducting new experiments 
on rectangular area perception (as in treemaps or 
cartograms) and on chart size and gridline spacing; 
and analyzing the impact of reward (payment) levels 
on completion time and result quality finding that 
higher rewards lead to faster completion rates. 

Interpretation
Data analysis and visualization create a “formalized 
representation” of data, which needs to be inter-
preted to inform sensemaking and actions. When 
reading a visualization, it is important to detect any 
omissions, errors, and biases. 

Errors are easily made in any step of the analysis 
and visualization workflow. Critical data can be 
left out; algorithm and parameter selections can 
have a major impact on visualization layout and 
design; and visual encoding choices will affect the 
interpretation of results. John Brian Harley’s theory 
of cartographic silence distinguishes two types of 
silences: intentional silences, which are specific acts 
of censorship, and unintentional silences, which 
are unconscious omissions. Examples of misleading 
visualizations are given on the right. When inter-
preting a visualization, it is important to under-
stand both its power and its limitations.

When using visualizations in decision making, 
it is important to distinguish (1) the true question 
or issue from (2) the data and methods applied to 
answer it and (3) the potential impact of planned 
decisions. Frequently, decisions influence future 
actions and the resulting data. For example, fund-
ing a new area of research will lead to new hires; 
newly hired scholars will then publish or perish; 
and each publication will cite other papers—most 
likely within the funded area. That is, there is a 
strong correlation between the amount of funding 
an area of science enjoys and the number of cita-
tions papers in that area receive. If future funding 
is based on the number of existing citations, then 
“rich areas” become even richer over time—which 
might not be intended. 

Projections 
Changes made in geospatial projections have 
a major impact on area sizes and the distances 
between data points. Shown below are three  
common projections, with Tissot’s indicatrices 
placed at the same geospatial position to illustrate 
the different distortion at these points for each of 
the various projections.

Distortions 
Visualizations can be distorted in many different 
ways, making them difficult or impossible to inter-
pret correctly. Two renderings of the same data—
government payrolls in 1937—are shown here; the 
left image with the broken y-axis scale is meant to 
suggest an increase in payrolls, whereas the right 
image confirms payroll stability.

Not only elements of the reference system (e.g., 
axes) but also data overlay (e.g., graphic symbol 
types such as bars; see page 46, Comparisons) may 
be broken.

Regressions
As discussed in Statistical Studies (page 44),  
the selection of different curve fittings strongly 
influences the prediction of future values. Shown 
here are a linear (top) and polynomial (bottom) fit-
ting of the same data; notice the vastly different 
projections that appear for the month of March.

Perspective
Linear perspective has parallel lines converging to 
a single point; that is, objects of the same size that 
are placed further away appear smaller than nearby 
objects. This can cause confusion in data visual-
izations. For example, the doctors in this example 
appear to be proportionally the same size, contrary 
to the data values they represent.

Dimensions
Representing data using three-dimensional objects 
tends to lead to confusion in interpretation. For 
example, changing the height of a 3D object (e.g., 
doubling the height of a 1" x 1" x 1" cube) changes 
its width and depth proportionally, effectively 
increasing its volume eight times (so that it becomes 
a 2" x 2" x 2" cube), see below. Another example 
can be found in Darrell Huff’s How to Lie with 
Statistics that uses three-dimensional drawings of 
two moneybags to show how the weekly salary for 
a carpenter from the fictional country of Rotundia 
differs from that of a U.S. carpenter. According 
to the fictional data, U.S. carpenters earn twice as 
much, and the U.S. moneybag is about twice the 
height—however the impression of the difference is 
much greater.

Scales
The same data plotted on a linear scale will appear 
quite different when plotted on a logarithmic scale. 
Data that grows exponentially (e.g., the increase in 
world population from 1 billion in 1800 to 7 billion 
in 2011; see graph on pages 2–3 in Atlas of Science) 
will look like a straight line in a logarithmic plot (see 
the United Nations population estimates below for 
different continents between 1950 and 2050).

Descriptions and Examples

Winleel
Tripel

Mercador

Lambert
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